vllm/vllm/model_executor/layers/logits_processor.py
youkaichao bf53e0c70b
Support torchrun and SPMD-style offline inference (#12071)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-01-16 19:58:53 +08:00

169 lines
6.4 KiB
Python

"""A layer that compute logits from hidden_stats."""
import inspect
from typing import Optional
import torch
import torch.nn as nn
import vllm.envs as envs
from vllm.config import get_current_vllm_config
from vllm.distributed import (tensor_model_parallel_all_gather,
tensor_model_parallel_gather)
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.platforms import current_platform
class LogitsProcessor(nn.Module):
"""Process logits and apply logits processors from sampling metadata.
This layer does the following:
1. Gather logits from model hidden_states.
2. Scale logits if needed.
3. Apply logits processors (if any).
"""
def __init__(self,
vocab_size: int,
org_vocab_size: Optional[int] = None,
scale: float = 1.0,
logits_as_input: bool = False,
soft_cap: Optional[float] = None) -> None:
"""
Args:
scale: A scaling factor to apply to the logits.
"""
super().__init__()
self.scale = scale
self.vocab_size = vocab_size
# Whether the input is logits (default is hidden states).
self.logits_as_input = logits_as_input
# original vocabulary size (without LoRA).
self.org_vocab_size = org_vocab_size or vocab_size
# Soft cap the logits. Used in Gemma 2.
self.soft_cap = soft_cap
# Whether to use gather or all-gather to gather the logits.
parallel_config = get_current_vllm_config().parallel_config
self.use_all_gather = current_platform.is_tpu() \
or envs.VLLM_USE_V1 \
or parallel_config.distributed_executor_backend == "external_launcher" # noqa
def forward(
self,
lm_head: VocabParallelEmbedding,
hidden_states: torch.Tensor,
sampling_metadata: Optional[SamplingMetadata] = None,
embedding_bias: Optional[torch.Tensor] = None,
) -> Optional[torch.Tensor]:
if self.logits_as_input:
logits = hidden_states
else:
if sampling_metadata is not None:
hidden_states = _prune_hidden_states(hidden_states,
sampling_metadata)
# Get the logits for the next tokens.
logits = self._get_logits(hidden_states, lm_head, embedding_bias)
if logits is not None:
if self.soft_cap is not None:
logits = logits / self.soft_cap
logits = torch.tanh(logits)
logits = logits * self.soft_cap
if self.scale != 1.0:
logits *= self.scale
# Apply logits processors (if any).
if sampling_metadata is not None:
logits = _apply_logits_processors(logits, sampling_metadata)
return logits
def _get_logits(
self,
hidden_states: torch.Tensor,
lm_head: VocabParallelEmbedding,
embedding_bias: Optional[torch.Tensor],
) -> Optional[torch.Tensor]:
# Get the logits for the next tokens.
logits = lm_head.linear_method.apply(lm_head,
hidden_states,
bias=embedding_bias)
if self.use_all_gather:
# Gather is not supported for some devices such as TPUs.
# Use all-gather instead.
# NOTE(woosuk): Here, the outputs of every device should not be None
# because XLA requires strict SPMD among all devices. Every device
# should execute the same operations after gathering the logits.
logits = tensor_model_parallel_all_gather(logits)
else:
# None may be returned for rank > 0
logits = tensor_model_parallel_gather(logits)
# Remove paddings in vocab (if any).
if logits is not None:
logits = logits[..., :self.org_vocab_size]
return logits
def extra_repr(self) -> str:
s = f"vocab_size={self.vocab_size}"
s += f", forg_vocab_size={self.org_vocab_size}"
s += f", scale={self.scale}, logits_as_input={self.logits_as_input}"
return s
def _prune_hidden_states(
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> torch.Tensor:
# NOTE(kzawora): The if guard is needed for Gaudi - in some scenarios
# (warmup, profile_run) we might not have selected_token_indices,
# so we skip pruning.
if sampling_metadata.selected_token_indices is not None:
return hidden_states.index_select(
0, sampling_metadata.selected_token_indices)
else:
return hidden_states
def _apply_logits_processors(
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> torch.Tensor:
found_logits_processors = False
logits_processed = 0
for seq_group in sampling_metadata.seq_groups:
seq_ids = seq_group.seq_ids
sampling_params = seq_group.sampling_params
logits_processors = sampling_params.logits_processors
if logits_processors:
found_logits_processors = True
for seq_id, logits_row_idx in zip(seq_ids,
seq_group.sample_indices):
logits_row = logits[logits_row_idx]
past_tokens_ids = seq_group.seq_data[seq_id].output_token_ids
prompt_tokens_ids = seq_group.seq_data[seq_id].prompt_token_ids
for logits_processor in logits_processors:
parameters = inspect.signature(logits_processor).parameters
if len(parameters) == 3:
logits_row = logits_processor(prompt_tokens_ids,
past_tokens_ids,
logits_row)
else:
logits_row = logits_processor(past_tokens_ids,
logits_row)
logits[logits_row_idx] = logits_row
logits_processed += len(seq_group.sample_indices) + len(
seq_group.prompt_logprob_indices)
if found_logits_processors:
# verifies that no rows in logits were missed unexpectedly
assert logits_processed == logits.shape[0]
return logits