3359 lines
145 KiB
Python
3359 lines
145 KiB
Python
import ast
|
|
import copy
|
|
import enum
|
|
import hashlib
|
|
import json
|
|
import sys
|
|
import warnings
|
|
from contextlib import contextmanager
|
|
from dataclasses import dataclass, field, replace
|
|
from pathlib import Path
|
|
from typing import (TYPE_CHECKING, Any, Callable, ClassVar, Counter, Dict,
|
|
Final, List, Literal, Mapping, Optional, Protocol, Set,
|
|
Tuple, Type, Union)
|
|
|
|
import torch
|
|
from pydantic import BaseModel, Field, PrivateAttr
|
|
from transformers import PretrainedConfig
|
|
|
|
import vllm.envs as envs
|
|
from vllm.compilation.inductor_pass import CallableInductorPass, InductorPass
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.quantization import (QUANTIZATION_METHODS,
|
|
get_quantization_config)
|
|
from vllm.model_executor.models import ModelRegistry
|
|
from vllm.platforms import CpuArchEnum
|
|
from vllm.tracing import is_otel_available, otel_import_error_traceback
|
|
from vllm.transformers_utils.config import (
|
|
ConfigFormat, get_config, get_hf_image_processor_config,
|
|
get_hf_text_config, get_pooling_config,
|
|
get_sentence_transformer_tokenizer_config, is_encoder_decoder,
|
|
try_get_generation_config, uses_mrope)
|
|
from vllm.transformers_utils.s3_utils import S3Model
|
|
from vllm.transformers_utils.utils import is_s3
|
|
from vllm.utils import (GiB_bytes, LayerBlockType, cuda_device_count_stateless,
|
|
get_cpu_memory, random_uuid, resolve_obj_by_qualname)
|
|
|
|
if TYPE_CHECKING:
|
|
from ray.util.placement_group import PlacementGroup
|
|
|
|
from vllm.executor.executor_base import ExecutorBase
|
|
from vllm.model_executor.layers.quantization.base_config import (
|
|
QuantizationConfig)
|
|
from vllm.model_executor.model_loader.loader import BaseModelLoader
|
|
from vllm.transformers_utils.tokenizer_group.base_tokenizer_group import (
|
|
BaseTokenizerGroup)
|
|
else:
|
|
QuantizationConfig = None
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
_POOLING_MODEL_MAX_NUM_BATCHED_TOKENS = 32768
|
|
_MULTIMODAL_MODEL_MAX_NUM_BATCHED_TOKENS = 5120
|
|
|
|
TaskOption = Literal["auto", "generate", "embedding", "embed", "classify",
|
|
"score", "reward"]
|
|
|
|
_ResolvedTask = Literal["generate", "embed", "classify", "score", "reward",
|
|
"draft"]
|
|
|
|
RunnerType = Literal["generate", "pooling", "draft"]
|
|
|
|
_RUNNER_TASKS: Dict[RunnerType, List[_ResolvedTask]] = {
|
|
"generate": ["generate"],
|
|
"pooling": ["embed", "classify", "score", "reward"],
|
|
"draft": ["draft"],
|
|
}
|
|
|
|
_TASK_RUNNER: Dict[_ResolvedTask, RunnerType] = {
|
|
task: runner
|
|
for runner, tasks in _RUNNER_TASKS.items() for task in tasks
|
|
}
|
|
|
|
HfOverrides = Union[Dict[str, Any], Callable[[PretrainedConfig],
|
|
PretrainedConfig]]
|
|
|
|
|
|
class SupportsHash(Protocol):
|
|
|
|
def compute_hash(self) -> str:
|
|
...
|
|
|
|
|
|
class ModelConfig:
|
|
"""Configuration for the model.
|
|
|
|
Args:
|
|
model: Name or path of the huggingface model to use.
|
|
It is also used as the content for `model_name` tag in metrics
|
|
output when `served_model_name` is not specified.
|
|
task: The task to use the model for. Each vLLM instance only supports
|
|
one task, even if the same model can be used for multiple tasks.
|
|
When the model only supports one task, "auto" can be used to select
|
|
it; otherwise, you must specify explicitly which task to use.
|
|
tokenizer: Name or path of the huggingface tokenizer to use.
|
|
tokenizer_mode: Tokenizer mode. "auto" will use the fast tokenizer if
|
|
available, "slow" will always use the slow tokenizer, and
|
|
"mistral" will always use the tokenizer from `mistral_common`.
|
|
trust_remote_code: Trust remote code (e.g., from HuggingFace) when
|
|
downloading the model and tokenizer.
|
|
allowed_local_media_path: Allowing API requests to read local images or
|
|
videos from directories specified by the server file system.
|
|
This is a security risk. Should only be enabled in trusted
|
|
environments.
|
|
dtype: Data type for model weights and activations. The "auto" option
|
|
will use FP16 precision for FP32 and FP16 models, and BF16 precision
|
|
for BF16 models.
|
|
seed: Random seed for reproducibility.
|
|
revision: The specific model version to use. It can be a branch name,
|
|
a tag name, or a commit id. If unspecified, will use the default
|
|
version.
|
|
code_revision: The specific revision to use for the model code on
|
|
Hugging Face Hub. It can be a branch name, a tag name, or a
|
|
commit id. If unspecified, will use the default version.
|
|
tokenizer_revision: The specific tokenizer version to use. It can be a
|
|
branch name, a tag name, or a commit id. If unspecified, will use
|
|
the default version.
|
|
max_model_len: Maximum length of a sequence (including prompt and
|
|
output). If None, will be derived from the model.
|
|
spec_target_max_model_len: Specify the the maximum length for spec
|
|
decoding draft models.
|
|
quantization: Quantization method that was used to quantize the model
|
|
weights. If None, we assume the model weights are not quantized.
|
|
quantization_param_path: Path to JSON file containing scaling factors.
|
|
Used to load KV cache scaling factors into the model when KV cache
|
|
type is FP8_E4M3 on ROCm (AMD GPU). In the future these will also
|
|
be used to load activation and weight scaling factors when the
|
|
model dtype is FP8_E4M3 on ROCm.
|
|
enforce_eager: Whether to enforce eager execution. If True, we will
|
|
disable CUDA graph and always execute the model in eager mode.
|
|
If False, we will use CUDA graph and eager execution in hybrid.
|
|
If None, the user did not specify, so default to False.
|
|
max_seq_len_to_capture: Maximum sequence len covered by CUDA graphs.
|
|
When a sequence has context length larger than this, we fall back
|
|
to eager mode. Additionally for encoder-decoder models, if the
|
|
sequence length of the encoder input is larger than this, we fall
|
|
back to the eager mode.
|
|
max_logprobs: Maximum number of log probabilities. Defaults to 20.
|
|
disable_sliding_window: Whether to disable sliding window. If True,
|
|
we will disable the sliding window functionality of the model.
|
|
If the model does not support sliding window, this argument is
|
|
ignored.
|
|
skip_tokenizer_init: If true, skip initialization of tokenizer and
|
|
detokenizer.
|
|
served_model_name: The model name used in metrics tag `model_name`,
|
|
matches the model name exposed via the APIs. If multiple model
|
|
names provided, the first name will be used. If not specified,
|
|
the model name will be the same as `model`.
|
|
limit_mm_per_prompt: Maximum number of data items per modality
|
|
per prompt. Only applicable for multimodal models.
|
|
use_async_output_proc: Whether to use async output processor.
|
|
Defaults to True.
|
|
config_format: The config format which shall be loaded.
|
|
Defaults to 'auto' which defaults to 'hf'.
|
|
hf_overrides: If a dictionary, contains arguments to be forwarded to the
|
|
HuggingFace config. If a callable, it is called to update the
|
|
HuggingFace config.
|
|
mm_processor_kwargs: Arguments to be forwarded to the model's processor
|
|
for multi-modal data, e.g., image processor.
|
|
disable_mm_preprocessor_cache: If true, then disables caching of the
|
|
multi-modal preprocessor/mapper. (not recommended)
|
|
override_neuron_config: Initialize non default neuron config or
|
|
override default neuron config that are specific to Neuron devices,
|
|
this argument will be used to configure the neuron config that
|
|
can not be gathered from the vllm arguments.
|
|
override_pooler_config: Initialize non default pooling config or
|
|
override default pooling config for the pooling model.
|
|
logits_processor_pattern: Optional regex pattern specifying valid
|
|
logits processor qualified names that can be passed with the
|
|
`logits_processors` extra completion argument. Defaults to None,
|
|
which allows no processors.
|
|
generation_config: Configuration parameter file for generation.
|
|
"""
|
|
|
|
def compute_hash(self) -> str:
|
|
"""
|
|
WARNING: Whenever a new field is added to this config,
|
|
ensure that it is included in the factors list if
|
|
it affects the computation graph.
|
|
|
|
Provide a hash that uniquely identifies all the configs
|
|
that affect the structure of the computation
|
|
graph from input ids/embeddings to the final hidden states,
|
|
excluding anything before input ids/embeddings and after
|
|
the final hidden states.
|
|
"""
|
|
factors: List[Any] = []
|
|
factors.append(self.model)
|
|
factors.append(self.dtype)
|
|
factors.append(self.quantization)
|
|
factors.append(self.quantization_param_path)
|
|
factors.append(self.revision)
|
|
factors.append(self.code_revision)
|
|
factors.append(self.trust_remote_code)
|
|
factors.append(self.rope_scaling)
|
|
factors.append(self.rope_theta)
|
|
return hashlib.sha256(str(factors).encode()).hexdigest()
|
|
|
|
def __init__(self,
|
|
model: str,
|
|
task: Union[TaskOption, Literal["draft"]],
|
|
tokenizer: str,
|
|
tokenizer_mode: str,
|
|
trust_remote_code: bool,
|
|
dtype: Union[str, torch.dtype],
|
|
seed: int,
|
|
allowed_local_media_path: str = "",
|
|
revision: Optional[str] = None,
|
|
code_revision: Optional[str] = None,
|
|
rope_scaling: Optional[Dict[str, Any]] = None,
|
|
rope_theta: Optional[float] = None,
|
|
tokenizer_revision: Optional[str] = None,
|
|
max_model_len: Optional[int] = None,
|
|
spec_target_max_model_len: Optional[int] = None,
|
|
quantization: Optional[str] = None,
|
|
quantization_param_path: Optional[str] = None,
|
|
enforce_eager: Optional[bool] = None,
|
|
max_seq_len_to_capture: Optional[int] = None,
|
|
max_logprobs: int = 20,
|
|
disable_sliding_window: bool = False,
|
|
skip_tokenizer_init: bool = False,
|
|
served_model_name: Optional[Union[str, List[str]]] = None,
|
|
limit_mm_per_prompt: Optional[Mapping[str, int]] = None,
|
|
use_async_output_proc: bool = True,
|
|
config_format: ConfigFormat = ConfigFormat.AUTO,
|
|
hf_overrides: Optional[HfOverrides] = None,
|
|
mm_processor_kwargs: Optional[Dict[str, Any]] = None,
|
|
disable_mm_preprocessor_cache: bool = False,
|
|
override_neuron_config: Optional[Dict[str, Any]] = None,
|
|
override_pooler_config: Optional["PoolerConfig"] = None,
|
|
logits_processor_pattern: Optional[str] = None,
|
|
generation_config: Optional[str] = None) -> None:
|
|
self.model = model
|
|
self.tokenizer = tokenizer
|
|
self.tokenizer_mode = tokenizer_mode
|
|
self.trust_remote_code = trust_remote_code
|
|
self.allowed_local_media_path = allowed_local_media_path
|
|
self.seed = seed
|
|
self.revision = revision
|
|
self.code_revision = code_revision
|
|
self.rope_scaling = rope_scaling
|
|
self.rope_theta = rope_theta
|
|
|
|
if hf_overrides is None:
|
|
hf_overrides = {}
|
|
|
|
if callable(hf_overrides):
|
|
hf_overrides_kw = {}
|
|
hf_overrides_fn = hf_overrides
|
|
else:
|
|
hf_overrides_kw = hf_overrides
|
|
hf_overrides_fn = None
|
|
|
|
if rope_scaling is not None:
|
|
hf_override: Dict[str, Any] = {"rope_scaling": rope_scaling}
|
|
hf_overrides_kw.update(hf_override)
|
|
msg = ("`--rope-scaling` will be removed in a future release. "
|
|
f"'Please instead use `--hf-overrides '{hf_override!r}'`")
|
|
warnings.warn(DeprecationWarning(msg), stacklevel=2)
|
|
if rope_theta is not None:
|
|
hf_override = {"rope_theta": rope_theta}
|
|
hf_overrides_kw.update(hf_override)
|
|
msg = ("`--rope-theta` will be removed in a future release. "
|
|
f"'Please instead use `--hf-overrides '{hf_override!r}'`")
|
|
warnings.warn(DeprecationWarning(msg), stacklevel=2)
|
|
|
|
self.maybe_pull_model_tokenizer_for_s3(model, tokenizer)
|
|
|
|
# The tokenizer version is consistent with the model version by default.
|
|
if tokenizer_revision is None:
|
|
self.tokenizer_revision = revision
|
|
else:
|
|
self.tokenizer_revision = tokenizer_revision
|
|
self.quantization = quantization
|
|
self.quantization_param_path = quantization_param_path
|
|
self.enforce_eager = enforce_eager
|
|
self.max_seq_len_to_capture = max_seq_len_to_capture
|
|
self.max_logprobs = max_logprobs
|
|
self.disable_sliding_window = disable_sliding_window
|
|
self.skip_tokenizer_init = skip_tokenizer_init
|
|
|
|
hf_config = get_config(self.model, trust_remote_code, revision,
|
|
code_revision, config_format)
|
|
|
|
if hf_overrides_kw:
|
|
logger.info("Overriding HF config with %s", hf_overrides_kw)
|
|
hf_config.update(hf_overrides_kw)
|
|
if hf_overrides_fn:
|
|
logger.info("Overriding HF config with %s", hf_overrides_fn)
|
|
hf_config = hf_overrides_fn(hf_config)
|
|
|
|
self.hf_config = hf_config
|
|
|
|
self.hf_text_config = get_hf_text_config(self.hf_config)
|
|
self.encoder_config = self._get_encoder_config()
|
|
self.hf_image_processor_config = get_hf_image_processor_config(
|
|
self.model, revision)
|
|
self.dtype = _get_and_verify_dtype(self.hf_text_config, dtype)
|
|
self.use_async_output_proc = use_async_output_proc
|
|
self.mm_processor_kwargs = mm_processor_kwargs
|
|
self.disable_mm_preprocessor_cache = disable_mm_preprocessor_cache
|
|
|
|
# Set enforce_eager to False if the value is unset.
|
|
if self.enforce_eager is None:
|
|
self.enforce_eager = False
|
|
|
|
sliding_window = getattr(self.hf_text_config, "sliding_window", None)
|
|
has_interleaved_attention = (sliding_window is not None) and (
|
|
isinstance(sliding_window, list) or
|
|
(self.hf_text_config.model_type in ["gemma2", "cohere2"]))
|
|
|
|
if (not self.disable_sliding_window and has_interleaved_attention):
|
|
if envs.VLLM_ATTENTION_BACKEND == "XFORMERS":
|
|
sliding_window_len_min = get_min_sliding_window(
|
|
self.hf_text_config.sliding_window)
|
|
|
|
logger.warning_once(
|
|
f"{self.hf_text_config.model_type} has interleaved "
|
|
"attention, which is currently not supported by the "
|
|
"XFORMERS backend. Disabling sliding window and capping "
|
|
"the max length to the sliding window size "
|
|
f"({sliding_window_len_min}).")
|
|
self.disable_sliding_window = True
|
|
else:
|
|
# for a model with interleaved attention,
|
|
# the scheduler and the model treat it as full attention
|
|
# (i.e., not dropping any tokens outside the window).
|
|
# only the attention layer itself is aware of the sliding
|
|
# window, and use the window size to compute the attention.
|
|
self.hf_text_config.interleaved_sliding_window = sliding_window
|
|
delattr(self.hf_text_config, "sliding_window")
|
|
sliding_window = None
|
|
|
|
self.max_model_len = _get_and_verify_max_len(
|
|
hf_config=self.hf_text_config,
|
|
max_model_len=max_model_len,
|
|
disable_sliding_window=self.disable_sliding_window,
|
|
sliding_window_len=self.get_hf_config_sliding_window(),
|
|
spec_target_max_model_len=spec_target_max_model_len,
|
|
encoder_config=self.encoder_config)
|
|
self.served_model_name = get_served_model_name(model,
|
|
served_model_name)
|
|
self.multimodal_config = self._init_multimodal_config(
|
|
limit_mm_per_prompt)
|
|
if not self.skip_tokenizer_init:
|
|
self._verify_tokenizer_mode()
|
|
|
|
self.is_attention_free = self._init_attention_free()
|
|
self.is_hybrid = self._init_is_hybrid()
|
|
self.has_inner_state = self._init_has_inner_state()
|
|
|
|
from vllm.platforms import current_platform
|
|
if current_platform.is_neuron():
|
|
self.override_neuron_config = override_neuron_config
|
|
else:
|
|
self.override_neuron_config = None
|
|
|
|
supported_tasks, task = self._resolve_task(task, self.hf_config)
|
|
self.supported_tasks = supported_tasks
|
|
self.task: Final = task
|
|
if self.task in ("draft", "generate"):
|
|
self.truncation_side = "left"
|
|
else:
|
|
self.truncation_side = "right"
|
|
|
|
self.pooler_config = self._init_pooler_config(override_pooler_config)
|
|
self.logits_processor_pattern = logits_processor_pattern
|
|
|
|
self.generation_config = generation_config
|
|
|
|
self._verify_quantization()
|
|
self._verify_cuda_graph()
|
|
self._verify_bnb_config()
|
|
|
|
def maybe_pull_model_tokenizer_for_s3(self, model: str,
|
|
tokenizer: str) -> None:
|
|
"""
|
|
Pull the model config or tokenizer to a temporary
|
|
directory in case of S3.
|
|
|
|
Args:
|
|
model: The model name or path.
|
|
tokenizer: The tokenizer name or path.
|
|
|
|
"""
|
|
if is_s3(model) or is_s3(tokenizer):
|
|
if is_s3(model):
|
|
s3_model = S3Model()
|
|
s3_model.pull_files(model, allow_pattern=["*config.json"])
|
|
self.model_weights = self.model
|
|
self.model = s3_model.dir
|
|
|
|
if is_s3(tokenizer):
|
|
s3_tokenizer = S3Model()
|
|
s3_tokenizer.pull_files(
|
|
model, ignore_pattern=["*.pt", "*.safetensors", "*.bin"])
|
|
self.tokenizer = s3_tokenizer.dir
|
|
|
|
def _init_multimodal_config(
|
|
self, limit_mm_per_prompt: Optional[Mapping[str, int]]
|
|
) -> Optional["MultiModalConfig"]:
|
|
architectures = getattr(self.hf_config, "architectures", [])
|
|
if ModelRegistry.is_multimodal_model(architectures):
|
|
return MultiModalConfig(limit_per_prompt=limit_mm_per_prompt or {})
|
|
|
|
if limit_mm_per_prompt:
|
|
raise ValueError("`limit_mm_per_prompt` is only supported for "
|
|
"multimodal models.")
|
|
|
|
return None
|
|
|
|
def _get_encoder_config(self):
|
|
return get_sentence_transformer_tokenizer_config(
|
|
self.model, self.revision)
|
|
|
|
def _init_pooler_config(
|
|
self,
|
|
override_pooler_config: Optional["PoolerConfig"],
|
|
) -> Optional["PoolerConfig"]:
|
|
|
|
if self.runner_type == "pooling":
|
|
user_config = override_pooler_config or PoolerConfig()
|
|
|
|
base_config = get_pooling_config(self.model, self.revision)
|
|
if base_config is not None:
|
|
# Only set values that are not overridden by the user
|
|
for k, v in base_config.items():
|
|
if getattr(user_config, k) is None:
|
|
setattr(user_config, k, v)
|
|
|
|
return user_config
|
|
|
|
return None
|
|
|
|
def _init_attention_free(self) -> bool:
|
|
architectures = getattr(self.hf_config, "architectures", [])
|
|
return ModelRegistry.is_attention_free_model(architectures)
|
|
|
|
def _init_is_hybrid(self) -> bool:
|
|
architectures = getattr(self.hf_config, "architectures", [])
|
|
return ModelRegistry.is_hybrid_model(architectures)
|
|
|
|
def _init_has_inner_state(self) -> bool:
|
|
architectures = getattr(self.hf_config, "architectures", [])
|
|
return ModelRegistry.model_has_inner_state(architectures)
|
|
|
|
def _verify_tokenizer_mode(self) -> None:
|
|
tokenizer_mode = self.tokenizer_mode.lower()
|
|
if tokenizer_mode not in ["auto", "slow", "mistral"]:
|
|
raise ValueError(
|
|
f"Unknown tokenizer mode: {self.tokenizer_mode}. Must be "
|
|
"either 'auto', 'slow' or 'mistral'.")
|
|
self.tokenizer_mode = tokenizer_mode
|
|
|
|
def _get_preferred_task(
|
|
self,
|
|
architectures: List[str],
|
|
supported_tasks: Set[_ResolvedTask],
|
|
) -> Optional[_ResolvedTask]:
|
|
model_id = self.model
|
|
if get_pooling_config(model_id, self.revision):
|
|
return "embed"
|
|
if ModelRegistry.is_cross_encoder_model(architectures):
|
|
return "score"
|
|
|
|
suffix_to_preferred_task: List[Tuple[str, _ResolvedTask]] = [
|
|
# Other models follow this pattern
|
|
("ForCausalLM", "generate"),
|
|
("ForConditionalGeneration", "generate"),
|
|
("ForSequenceClassification", "classify"),
|
|
("ChatModel", "generate"),
|
|
("LMHeadModel", "generate"),
|
|
("EmbeddingModel", "embed"),
|
|
("RewardModel", "reward"),
|
|
]
|
|
_, arch = ModelRegistry.inspect_model_cls(architectures)
|
|
|
|
for suffix, pref_task in suffix_to_preferred_task:
|
|
if arch.endswith(suffix) and pref_task in supported_tasks:
|
|
return pref_task
|
|
|
|
return None
|
|
|
|
def _resolve_task(
|
|
self,
|
|
task_option: Union[TaskOption, Literal["draft"]],
|
|
hf_config: PretrainedConfig,
|
|
) -> Tuple[Set[_ResolvedTask], _ResolvedTask]:
|
|
if task_option == "draft":
|
|
return {"draft"}, "draft"
|
|
|
|
architectures = getattr(hf_config, "architectures", [])
|
|
|
|
runner_support: Dict[RunnerType, bool] = {
|
|
# NOTE: Listed from highest to lowest priority,
|
|
# in case the model supports multiple of them
|
|
"generate": ModelRegistry.is_text_generation_model(architectures),
|
|
"pooling": ModelRegistry.is_pooling_model(architectures),
|
|
}
|
|
supported_runner_types_lst: List[RunnerType] = [
|
|
runner_type
|
|
for runner_type, is_supported in runner_support.items()
|
|
if is_supported
|
|
]
|
|
|
|
supported_tasks_lst: List[_ResolvedTask] = [
|
|
task for runner_type in supported_runner_types_lst
|
|
for task in _RUNNER_TASKS[runner_type]
|
|
]
|
|
supported_tasks = set(supported_tasks_lst)
|
|
|
|
if task_option == "auto":
|
|
selected_task = next(iter(supported_tasks_lst))
|
|
|
|
if len(supported_tasks_lst) > 1:
|
|
preferred_task = self._get_preferred_task(
|
|
architectures, supported_tasks)
|
|
if preferred_task is not None:
|
|
selected_task = preferred_task
|
|
|
|
logger.info(
|
|
"This model supports multiple tasks: %s. "
|
|
"Defaulting to '%s'.", supported_tasks, selected_task)
|
|
else:
|
|
# Aliases
|
|
if task_option == "embedding":
|
|
preferred_task = self._get_preferred_task(
|
|
architectures, supported_tasks)
|
|
if preferred_task != "embed":
|
|
msg = ("The 'embedding' task will be restricted to "
|
|
"embedding models in a future release. Please "
|
|
"pass `--task classify`, `--task score`, or "
|
|
"`--task reward` explicitly for other pooling "
|
|
"models.")
|
|
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
|
|
|
task_option = preferred_task or "embed"
|
|
|
|
if task_option not in supported_tasks:
|
|
msg = (
|
|
f"This model does not support the '{task_option}' task. "
|
|
f"Supported tasks: {supported_tasks}")
|
|
raise ValueError(msg)
|
|
|
|
selected_task = task_option
|
|
|
|
return supported_tasks, selected_task
|
|
|
|
def _parse_quant_hf_config(self):
|
|
quant_cfg = getattr(self.hf_config, "quantization_config", None)
|
|
if quant_cfg is None:
|
|
# compressed-tensors uses a "compression_config" key
|
|
quant_cfg = getattr(self.hf_config, "compression_config", None)
|
|
return quant_cfg
|
|
|
|
def _verify_quantization(self) -> None:
|
|
supported_quantization = QUANTIZATION_METHODS
|
|
optimized_quantization_methods = [
|
|
"fp8", "marlin", "modelopt", "gptq_marlin_24", "gptq_marlin",
|
|
"awq_marlin", "fbgemm_fp8", "compressed_tensors",
|
|
"compressed-tensors", "experts_int8", "quark"
|
|
]
|
|
if self.quantization is not None:
|
|
self.quantization = self.quantization.lower()
|
|
|
|
# Parse quantization method from the HF model config, if available.
|
|
quant_cfg = self._parse_quant_hf_config()
|
|
|
|
if quant_cfg is not None:
|
|
quant_method = quant_cfg.get("quant_method", "").lower()
|
|
|
|
# Detect which checkpoint is it
|
|
for name in QUANTIZATION_METHODS:
|
|
method = get_quantization_config(name)
|
|
quantization_override = method.override_quantization_method(
|
|
quant_cfg, self.quantization)
|
|
if quantization_override:
|
|
quant_method = quantization_override
|
|
self.quantization = quantization_override
|
|
break
|
|
|
|
# Verify quantization configurations.
|
|
if self.quantization is None:
|
|
self.quantization = quant_method
|
|
elif self.quantization != quant_method:
|
|
raise ValueError(
|
|
"Quantization method specified in the model config "
|
|
f"({quant_method}) does not match the quantization "
|
|
f"method specified in the `quantization` argument "
|
|
f"({self.quantization}).")
|
|
|
|
if self.quantization is not None:
|
|
if self.quantization not in supported_quantization:
|
|
raise ValueError(
|
|
f"Unknown quantization method: {self.quantization}. Must "
|
|
f"be one of {supported_quantization}.")
|
|
from vllm.platforms import current_platform
|
|
current_platform.verify_quantization(self.quantization)
|
|
if self.quantization not in optimized_quantization_methods:
|
|
logger.warning(
|
|
"%s quantization is not fully "
|
|
"optimized yet. The speed can be slower than "
|
|
"non-quantized models.", self.quantization)
|
|
|
|
def _verify_cuda_graph(self) -> None:
|
|
if self.max_seq_len_to_capture is None:
|
|
self.max_seq_len_to_capture = self.max_model_len
|
|
self.max_seq_len_to_capture = min(self.max_seq_len_to_capture,
|
|
self.max_model_len)
|
|
|
|
if (self.hf_config.model_type == 'deepseek_v3'
|
|
and not self.enforce_eager):
|
|
logger.warning("CUDA graph is not supported for Deepseek V3 yet, "
|
|
"fallback to the eager mode.")
|
|
self.enforce_eager = True
|
|
|
|
def _verify_bnb_config(self) -> None:
|
|
"""
|
|
The current version of bitsandbytes (0.44.0) with 8-bit models does not
|
|
yet support CUDA graph.
|
|
"""
|
|
is_bitsandbytes = self.quantization == "bitsandbytes"
|
|
has_quantization_config = (getattr(self.hf_config,
|
|
"quantization_config", None)
|
|
is not None)
|
|
is_8bit = (self.hf_config.quantization_config.get(
|
|
"load_in_8bit", False) if has_quantization_config else False)
|
|
if all([
|
|
is_bitsandbytes,
|
|
has_quantization_config,
|
|
is_8bit,
|
|
not self.enforce_eager,
|
|
]):
|
|
logger.warning(
|
|
"CUDA graph is not supported on BitAndBytes 8bit yet, "
|
|
"fallback to the eager mode.")
|
|
self.enforce_eager = True
|
|
|
|
def verify_async_output_proc(self, parallel_config, speculative_config,
|
|
device_config) -> None:
|
|
if not self.use_async_output_proc:
|
|
# Nothing to check
|
|
return
|
|
|
|
if parallel_config.pipeline_parallel_size > 1:
|
|
logger.warning("Async output processing can not be enabled "
|
|
"with pipeline parallel")
|
|
self.use_async_output_proc = False
|
|
return
|
|
|
|
# Reminder: Please update docs/source/features/compatibility_matrix.md
|
|
# If the feature combo become valid
|
|
from vllm.platforms import current_platform
|
|
if not current_platform.is_async_output_supported(self.enforce_eager):
|
|
logger.warning(
|
|
"Async output processing is not supported on the "
|
|
"current platform type %s.", current_platform.device_type)
|
|
self.use_async_output_proc = False
|
|
return
|
|
|
|
if envs.VLLM_USE_RAY_SPMD_WORKER:
|
|
logger.warning(
|
|
"Async output processing can not be enabled with ray spmd")
|
|
self.use_async_output_proc = False
|
|
return
|
|
|
|
# Async postprocessor is not necessary for pooling models
|
|
# since there is no token generation
|
|
if self.runner_type == "pooling":
|
|
self.use_async_output_proc = False
|
|
|
|
# Reminder: Please update docs/source/features/compatibility_matrix.md
|
|
# If the feature combo become valid
|
|
if speculative_config:
|
|
logger.warning("Async output processing is not supported with"
|
|
" speculative decoding currently.")
|
|
self.use_async_output_proc = False
|
|
|
|
def verify_with_parallel_config(
|
|
self,
|
|
parallel_config: "ParallelConfig",
|
|
) -> None:
|
|
total_num_attention_heads = getattr(self.hf_text_config,
|
|
"num_attention_heads", 0)
|
|
tensor_parallel_size = parallel_config.tensor_parallel_size
|
|
if total_num_attention_heads % tensor_parallel_size != 0:
|
|
raise ValueError(
|
|
f"Total number of attention heads ({total_num_attention_heads})"
|
|
" must be divisible by tensor parallel size "
|
|
f"({tensor_parallel_size}).")
|
|
|
|
pipeline_parallel_size = parallel_config.pipeline_parallel_size
|
|
if pipeline_parallel_size > 1:
|
|
architectures = getattr(self.hf_config, "architectures", [])
|
|
if not ModelRegistry.is_pp_supported_model(architectures):
|
|
raise NotImplementedError(
|
|
"Pipeline parallelism is not supported for this model. "
|
|
"Supported models implement the `SupportsPP` interface.")
|
|
|
|
if self.use_async_output_proc:
|
|
logger.warning("Async output processor is not supported with "
|
|
"pipeline parallelism currently. Disabling it.")
|
|
self.use_async_output_proc = False
|
|
|
|
def get_hf_config_sliding_window(
|
|
self) -> Union[Optional[int], List[Optional[int]]]:
|
|
"""Get the sliding window size, or None if disabled."""
|
|
|
|
# Some models, like Qwen2 and Qwen1.5, use `use_sliding_window` in
|
|
# addition to sliding window size. We check if that field is present
|
|
# and if it's False, return None.
|
|
if (hasattr(self.hf_text_config, "use_sliding_window")
|
|
and not self.hf_text_config.use_sliding_window):
|
|
return None
|
|
return getattr(self.hf_text_config, "sliding_window", None)
|
|
|
|
def get_sliding_window(self) -> Optional[Union[int, List[Optional[int]]]]:
|
|
"""Get the sliding window size, or None if disabled.
|
|
"""
|
|
# If user disables sliding window, return None.
|
|
if self.disable_sliding_window:
|
|
return None
|
|
# Otherwise get the value from the hf config.
|
|
return self.get_hf_config_sliding_window()
|
|
|
|
def get_vocab_size(self) -> int:
|
|
return self.hf_text_config.vocab_size
|
|
|
|
def get_hidden_size(self) -> int:
|
|
return self.hf_text_config.hidden_size
|
|
|
|
def get_head_size(self) -> int:
|
|
# TODO remove hard code
|
|
if hasattr(self.hf_text_config,
|
|
"model_type") and (self.hf_text_config.model_type
|
|
in ('deepseek_v2', 'deepseek_v3')):
|
|
qk_rope_head_dim = getattr(self.hf_text_config, "qk_rope_head_dim",
|
|
0)
|
|
qk_nope_head_dim = getattr(self.hf_text_config, "qk_nope_head_dim",
|
|
0)
|
|
if qk_rope_head_dim and qk_nope_head_dim:
|
|
return qk_rope_head_dim + qk_nope_head_dim
|
|
|
|
if self.is_attention_free:
|
|
return 0
|
|
|
|
if hasattr(self.hf_text_config, "head_dim"):
|
|
return self.hf_text_config.head_dim
|
|
# FIXME(woosuk): This may not be true for all models.
|
|
return (self.hf_text_config.hidden_size //
|
|
self.hf_text_config.num_attention_heads)
|
|
|
|
def get_total_num_kv_heads(self) -> int:
|
|
"""Returns the total number of KV heads."""
|
|
# For GPTBigCode & Falcon:
|
|
# NOTE: for falcon, when new_decoder_architecture is True, the
|
|
# multi_query flag is ignored and we use n_head_kv for the number of
|
|
# KV heads.
|
|
falcon_model_types = ["falcon", "RefinedWeb", "RefinedWebModel"]
|
|
new_decoder_arch_falcon = (
|
|
self.hf_config.model_type in falcon_model_types
|
|
and getattr(self.hf_config, "new_decoder_architecture", False))
|
|
if not new_decoder_arch_falcon and getattr(self.hf_text_config,
|
|
"multi_query", False):
|
|
# Multi-query attention, only one KV head.
|
|
# Currently, tensor parallelism is not supported in this case.
|
|
return 1
|
|
|
|
# For DBRX and MPT
|
|
if self.hf_config.model_type == "mpt":
|
|
if "kv_n_heads" in self.hf_config.attn_config:
|
|
return self.hf_config.attn_config["kv_n_heads"]
|
|
return self.hf_config.num_attention_heads
|
|
if self.hf_config.model_type == "dbrx":
|
|
return getattr(self.hf_config.attn_config, "kv_n_heads",
|
|
self.hf_config.num_attention_heads)
|
|
|
|
if self.is_attention_free:
|
|
return 0
|
|
|
|
attributes = [
|
|
# For Falcon:
|
|
"n_head_kv",
|
|
"num_kv_heads",
|
|
# For LLaMA-2:
|
|
"num_key_value_heads",
|
|
# For ChatGLM:
|
|
"multi_query_group_num",
|
|
]
|
|
for attr in attributes:
|
|
num_kv_heads = getattr(self.hf_text_config, attr, None)
|
|
if num_kv_heads is not None:
|
|
return num_kv_heads
|
|
|
|
# For non-grouped-query attention models, the number of KV heads is
|
|
# equal to the number of attention heads.
|
|
return self.hf_text_config.num_attention_heads
|
|
|
|
def get_num_kv_heads(self, parallel_config: "ParallelConfig") -> int:
|
|
"""Returns the number of KV heads per GPU."""
|
|
total_num_kv_heads = self.get_total_num_kv_heads()
|
|
# If tensor parallelism is used, we divide the number of KV heads by
|
|
# the tensor parallel size. We will replicate the KV heads in the
|
|
# case where the number of KV heads is smaller than the tensor
|
|
# parallel size so each GPU has at least one KV head.
|
|
return max(1,
|
|
total_num_kv_heads // parallel_config.tensor_parallel_size)
|
|
|
|
def get_num_attention_heads(self,
|
|
parallel_config: "ParallelConfig") -> int:
|
|
num_heads = getattr(self.hf_text_config, "num_attention_heads", 0)
|
|
return num_heads // parallel_config.tensor_parallel_size
|
|
|
|
def get_layers_start_end_indices(
|
|
self, parallel_config: "ParallelConfig") -> Tuple[int, int]:
|
|
from vllm.distributed.utils import get_pp_indices
|
|
total_num_hidden_layers = getattr(self.hf_text_config,
|
|
"num_hidden_layers", 0)
|
|
pp_rank = parallel_config.rank // parallel_config.tensor_parallel_size
|
|
pp_size = parallel_config.pipeline_parallel_size
|
|
start, end = get_pp_indices(total_num_hidden_layers, pp_rank, pp_size)
|
|
return start, end
|
|
|
|
def get_num_layers(self, parallel_config: "ParallelConfig") -> int:
|
|
start, end = self.get_layers_start_end_indices(parallel_config)
|
|
return end - start
|
|
|
|
def get_num_layers_by_block_type(
|
|
self,
|
|
parallel_config: "ParallelConfig",
|
|
block_type: LayerBlockType = LayerBlockType.attention,
|
|
) -> int:
|
|
# This function relies on 'layers_block_type' in hf_config,
|
|
# for w/o this attribute, we will need to have workarounds like so
|
|
attn_block_type = block_type == LayerBlockType.attention
|
|
is_transformer = not self.is_hybrid and not self.is_attention_free
|
|
start, end = self.get_layers_start_end_indices(parallel_config)
|
|
|
|
if is_transformer:
|
|
# Handle the basic case first
|
|
return end - start if attn_block_type else 0
|
|
elif self.is_attention_free:
|
|
# Attention free
|
|
# Note that this code assumes there
|
|
# is only one type of attention-free block type.
|
|
return 0 if attn_block_type else end - start
|
|
else:
|
|
# Hybrid model
|
|
layers_block_type_value = getattr(self.hf_config,
|
|
"layers_block_type", None)
|
|
if layers_block_type_value is None:
|
|
raise ValueError("The model is an hybrid without a"
|
|
"layers_block_type in the hf_config,"
|
|
"cannot determine the num of "
|
|
f"{block_type.value} layers")
|
|
|
|
return sum(t == block_type.value
|
|
for t in layers_block_type_value[start:end])
|
|
|
|
def get_multimodal_config(self) -> "MultiModalConfig":
|
|
"""
|
|
Get the multimodal configuration of the model.
|
|
|
|
Raises:
|
|
ValueError: If the model is not multimodal.
|
|
"""
|
|
if self.multimodal_config is None:
|
|
raise ValueError("The model is not multimodal.")
|
|
|
|
return self.multimodal_config
|
|
|
|
def try_get_generation_config(self) -> Dict[str, Any]:
|
|
if self.generation_config is None or self.generation_config == "auto":
|
|
config = try_get_generation_config(
|
|
self.model,
|
|
trust_remote_code=self.trust_remote_code,
|
|
revision=self.revision,
|
|
)
|
|
else:
|
|
config = try_get_generation_config(
|
|
self.generation_config,
|
|
trust_remote_code=self.trust_remote_code,
|
|
)
|
|
|
|
if config is None:
|
|
return {}
|
|
|
|
return config.to_diff_dict()
|
|
|
|
def get_diff_sampling_param(self) -> Dict[str, Any]:
|
|
"""
|
|
This method returns a dictionary containing the parameters
|
|
that differ from the default sampling parameters, but only
|
|
if `generation_config` is set. If `generation_config` is not
|
|
set, an empty dictionary is returned.
|
|
|
|
Returns:
|
|
Dict[str, Any]: A dictionary with the differing sampling
|
|
parameters if `generation_config` is set, otherwise an
|
|
empty dictionary.
|
|
"""
|
|
if self.generation_config is None:
|
|
# When generation_config is not set
|
|
return {}
|
|
config = self.try_get_generation_config()
|
|
available_params = [
|
|
"repetition_penalty",
|
|
"temperature",
|
|
"top_k",
|
|
"top_p",
|
|
"min_p",
|
|
]
|
|
if any(p in config for p in available_params):
|
|
diff_sampling_param = {
|
|
p: config.get(p)
|
|
for p in available_params if config.get(p) is not None
|
|
}
|
|
else:
|
|
diff_sampling_param = {}
|
|
return diff_sampling_param
|
|
|
|
@property
|
|
def is_encoder_decoder(self) -> bool:
|
|
"""Extract the HF encoder/decoder model flag."""
|
|
return is_encoder_decoder(self.hf_config)
|
|
|
|
@property
|
|
def uses_mrope(self) -> bool:
|
|
return uses_mrope(self.hf_config)
|
|
|
|
@property
|
|
def is_multimodal_model(self) -> bool:
|
|
return self.multimodal_config is not None
|
|
|
|
@property
|
|
def is_cross_encoder(self) -> bool:
|
|
architectures = getattr(self.hf_config, "architectures", [])
|
|
return ModelRegistry.is_cross_encoder_model(architectures)
|
|
|
|
@property
|
|
def supported_runner_types(self) -> Set[RunnerType]:
|
|
return {_TASK_RUNNER[task] for task in self.supported_tasks}
|
|
|
|
@property
|
|
def runner_type(self) -> RunnerType:
|
|
return _TASK_RUNNER[self.task]
|
|
|
|
|
|
class CacheConfig:
|
|
"""Configuration for the KV cache.
|
|
|
|
Args:
|
|
block_size: Size of a cache block in number of tokens.
|
|
gpu_memory_utilization: Fraction of GPU memory to use for the
|
|
vLLM execution.
|
|
swap_space: Size of the CPU swap space per GPU (in GiB).
|
|
cache_dtype: Data type for kv cache storage.
|
|
is_attention_free: Whether the model is attention-free.
|
|
num_gpu_blocks_override: Number of GPU blocks to use. This overrides the
|
|
profiled num_gpu_blocks if specified. Does nothing if None.
|
|
sliding_window: Sliding window size for the KV cache. Can not work with
|
|
prefix caching enabled.
|
|
enable_prefix_caching: Whether to enable prefix caching.
|
|
cpu_offload_gb: Size of the CPU offload buffer in GiB.
|
|
"""
|
|
|
|
def compute_hash(self) -> str:
|
|
"""
|
|
WARNING: Whenever a new field is added to this config,
|
|
ensure that it is included in the factors list if
|
|
it affects the computation graph.
|
|
|
|
Provide a hash that uniquely identifies all the configs
|
|
that affect the structure of the computation
|
|
graph from input ids/embeddings to the final hidden states,
|
|
excluding anything before input ids/embeddings and after
|
|
the final hidden states.
|
|
"""
|
|
factors: List[Any] = []
|
|
factors.append(self.cache_dtype)
|
|
# `cpu_offload_gb` does not use `torch.compile` yet.
|
|
hash_str = hashlib.md5(str(factors).encode()).hexdigest()
|
|
return hash_str
|
|
|
|
def __init__(
|
|
self,
|
|
block_size: int,
|
|
gpu_memory_utilization: float,
|
|
swap_space: float,
|
|
cache_dtype: str,
|
|
is_attention_free: bool = False,
|
|
num_gpu_blocks_override: Optional[int] = None,
|
|
sliding_window: Optional[int] = None,
|
|
enable_prefix_caching: bool = False,
|
|
cpu_offload_gb: float = 0,
|
|
) -> None:
|
|
self.block_size = block_size
|
|
self.gpu_memory_utilization = gpu_memory_utilization
|
|
self.swap_space_bytes = swap_space * GiB_bytes
|
|
self.num_gpu_blocks_override = num_gpu_blocks_override
|
|
self.cache_dtype = cache_dtype
|
|
self.is_attention_free = is_attention_free
|
|
self.sliding_window = sliding_window
|
|
self.enable_prefix_caching = enable_prefix_caching
|
|
self.cpu_offload_gb = cpu_offload_gb
|
|
|
|
self._verify_args()
|
|
self._verify_cache_dtype()
|
|
self._verify_prefix_caching()
|
|
|
|
# Will be set after profiling.
|
|
self.num_gpu_blocks: Optional[int] = None
|
|
self.num_cpu_blocks: Optional[int] = None
|
|
|
|
def metrics_info(self):
|
|
# convert cache_config to dict(key: str, value: str) for prometheus
|
|
# metrics info
|
|
return {key: str(value) for key, value in self.__dict__.items()}
|
|
|
|
def _verify_args(self) -> None:
|
|
if self.gpu_memory_utilization > 1.0:
|
|
raise ValueError(
|
|
"GPU memory utilization must be less than 1.0. Got "
|
|
f"{self.gpu_memory_utilization}.")
|
|
|
|
def _verify_cache_dtype(self) -> None:
|
|
if self.cache_dtype == "auto":
|
|
pass
|
|
elif self.cache_dtype in ("fp8", "fp8_e4m3", "fp8_e5m2"):
|
|
logger.info(
|
|
"Using fp8 data type to store kv cache. It reduces the GPU "
|
|
"memory footprint and boosts the performance. "
|
|
"Meanwhile, it may cause accuracy drop without a proper "
|
|
"scaling factor")
|
|
else:
|
|
raise ValueError(f"Unknown kv cache dtype: {self.cache_dtype}")
|
|
|
|
def _verify_prefix_caching(self) -> None:
|
|
if not self.enable_prefix_caching:
|
|
return
|
|
|
|
if self.sliding_window is not None:
|
|
raise NotImplementedError(
|
|
"Prefix caching is not supported with sliding window. "
|
|
"Run with --disable-sliding-window to use prefix caching.")
|
|
|
|
def verify_with_parallel_config(
|
|
self,
|
|
parallel_config: "ParallelConfig",
|
|
) -> None:
|
|
total_cpu_memory = get_cpu_memory()
|
|
# FIXME(woosuk): Here, it is assumed that the GPUs in a tensor parallel
|
|
# group are in the same node. However, the GPUs may span multiple nodes.
|
|
num_gpus_per_node = parallel_config.tensor_parallel_size
|
|
cpu_memory_usage = self.swap_space_bytes * num_gpus_per_node
|
|
|
|
msg = (f"{cpu_memory_usage / GiB_bytes:.2f} GiB out of the "
|
|
f"{total_cpu_memory / GiB_bytes:.2f} GiB total CPU memory "
|
|
"is allocated for the swap space.")
|
|
if cpu_memory_usage > 0.7 * total_cpu_memory:
|
|
raise ValueError("Too large swap space. " + msg)
|
|
elif cpu_memory_usage > 0.4 * total_cpu_memory:
|
|
logger.warning("Possibly too large swap space. %s", msg)
|
|
|
|
|
|
@dataclass
|
|
class TokenizerPoolConfig:
|
|
"""Configuration for the tokenizer pool.
|
|
|
|
Args:
|
|
pool_size: Number of tokenizer workers in the pool.
|
|
pool_type: Type of the pool.
|
|
extra_config: Additional config for the pool.
|
|
The way the config will be used depends on the
|
|
pool type.
|
|
"""
|
|
pool_size: int
|
|
pool_type: Union[str, Type["BaseTokenizerGroup"]]
|
|
extra_config: dict
|
|
|
|
def compute_hash(self) -> str:
|
|
"""
|
|
WARNING: Whenever a new field is added to this config,
|
|
ensure that it is included in the factors list if
|
|
it affects the computation graph.
|
|
|
|
Provide a hash that uniquely identifies all the configs
|
|
that affect the structure of the computation
|
|
graph from input ids/embeddings to the final hidden states,
|
|
excluding anything before input ids/embeddings and after
|
|
the final hidden states.
|
|
"""
|
|
# no factors to consider.
|
|
# this config will not affect the computation graph.
|
|
factors: List[Any] = []
|
|
hash_str = hashlib.md5(str(factors).encode()).hexdigest()
|
|
return hash_str
|
|
|
|
def __post_init__(self):
|
|
if self.pool_type not in ("ray", ) and not isinstance(
|
|
self.pool_type, type):
|
|
raise ValueError(f"Unknown pool type: {self.pool_type}")
|
|
if not isinstance(self.extra_config, dict):
|
|
raise ValueError("extra_config must be a dictionary.")
|
|
|
|
@classmethod
|
|
def create_config(
|
|
cls, tokenizer_pool_size: int,
|
|
tokenizer_pool_type: Union[str, Type["BaseTokenizerGroup"]],
|
|
tokenizer_pool_extra_config: Optional[Union[str, dict]]
|
|
) -> Optional["TokenizerPoolConfig"]:
|
|
"""Create a TokenizerPoolConfig from the given parameters.
|
|
|
|
If tokenizer_pool_size is 0, return None.
|
|
|
|
Args:
|
|
tokenizer_pool_size: Number of tokenizer workers in the pool.
|
|
tokenizer_pool_type: Type of the pool.
|
|
tokenizer_pool_extra_config: Additional config for the pool.
|
|
The way the config will be used depends on the
|
|
pool type. This can be a JSON string (will be parsed).
|
|
"""
|
|
if tokenizer_pool_size:
|
|
if isinstance(tokenizer_pool_extra_config, str):
|
|
tokenizer_pool_extra_config_parsed = json.loads(
|
|
tokenizer_pool_extra_config)
|
|
else:
|
|
tokenizer_pool_extra_config_parsed = (
|
|
tokenizer_pool_extra_config or {})
|
|
tokenizer_pool_config = cls(tokenizer_pool_size,
|
|
tokenizer_pool_type,
|
|
tokenizer_pool_extra_config_parsed)
|
|
else:
|
|
tokenizer_pool_config = None
|
|
return tokenizer_pool_config
|
|
|
|
|
|
class LoadFormat(str, enum.Enum):
|
|
AUTO = "auto"
|
|
PT = "pt"
|
|
SAFETENSORS = "safetensors"
|
|
NPCACHE = "npcache"
|
|
DUMMY = "dummy"
|
|
TENSORIZER = "tensorizer"
|
|
SHARDED_STATE = "sharded_state"
|
|
GGUF = "gguf"
|
|
BITSANDBYTES = "bitsandbytes"
|
|
MISTRAL = "mistral"
|
|
RUNAI_STREAMER = "runai_streamer"
|
|
|
|
|
|
@dataclass
|
|
class LoadConfig:
|
|
"""
|
|
download_dir: Directory to download and load the weights, default to the
|
|
default cache directory of huggingface.
|
|
load_format: The format of the model weights to load:
|
|
"auto" will try to load the weights in the safetensors format and
|
|
fall back to the pytorch bin format if safetensors format is
|
|
not available.
|
|
"pt" will load the weights in the pytorch bin format.
|
|
"safetensors" will load the weights in the safetensors format.
|
|
"npcache" will load the weights in pytorch format and store
|
|
a numpy cache to speed up the loading.
|
|
"dummy" will initialize the weights with random values, which is
|
|
mainly for profiling.
|
|
"tensorizer" will use CoreWeave's tensorizer library for
|
|
fast weight loading.
|
|
"bitsandbytes" will load nf4 type weights.
|
|
model_loader_extra_config: The extra config for the model loader.
|
|
ignore_patterns: The list of patterns to ignore when loading the model.
|
|
Default to "original/**/*" to avoid repeated loading of llama's
|
|
checkpoints.
|
|
"""
|
|
|
|
load_format: Union[str, LoadFormat, "BaseModelLoader"] = LoadFormat.AUTO
|
|
download_dir: Optional[str] = None
|
|
model_loader_extra_config: Optional[Union[str, dict]] = field(
|
|
default_factory=dict)
|
|
ignore_patterns: Optional[Union[List[str], str]] = None
|
|
|
|
def compute_hash(self) -> str:
|
|
"""
|
|
WARNING: Whenever a new field is added to this config,
|
|
ensure that it is included in the factors list if
|
|
it affects the computation graph.
|
|
|
|
Provide a hash that uniquely identifies all the configs
|
|
that affect the structure of the computation
|
|
graph from input ids/embeddings to the final hidden states,
|
|
excluding anything before input ids/embeddings and after
|
|
the final hidden states.
|
|
"""
|
|
# no factors to consider.
|
|
# this config will not affect the computation graph.
|
|
factors: List[Any] = []
|
|
hash_str = hashlib.md5(str(factors).encode()).hexdigest()
|
|
return hash_str
|
|
|
|
def __post_init__(self):
|
|
model_loader_extra_config = self.model_loader_extra_config or {}
|
|
if isinstance(model_loader_extra_config, str):
|
|
self.model_loader_extra_config = json.loads(
|
|
model_loader_extra_config)
|
|
if isinstance(self.load_format, str):
|
|
load_format = self.load_format.lower()
|
|
self.load_format = LoadFormat(load_format)
|
|
|
|
if self.ignore_patterns is not None and len(self.ignore_patterns) > 0:
|
|
logger.info(
|
|
"Ignoring the following patterns when downloading weights: %s",
|
|
self.ignore_patterns)
|
|
else:
|
|
self.ignore_patterns = ["original/**/*"]
|
|
|
|
|
|
@dataclass
|
|
class ParallelConfig:
|
|
"""Configuration for the distributed execution."""
|
|
|
|
pipeline_parallel_size: int = 1 # Number of pipeline parallel groups.
|
|
tensor_parallel_size: int = 1 # Number of tensor parallel groups.
|
|
|
|
# Deprecated, use distributed_executor_backend instead.
|
|
worker_use_ray: Optional[bool] = None
|
|
|
|
# Maximum number of multiple batches
|
|
# when load model sequentially. To avoid RAM OOM when using tensor
|
|
# parallel and large models.
|
|
max_parallel_loading_workers: Optional[int] = None
|
|
|
|
# Disable the custom all-reduce kernel and fall back to NCCL.
|
|
disable_custom_all_reduce: bool = False
|
|
|
|
# Config for the tokenizer pool. If None, will use synchronous tokenization.
|
|
tokenizer_pool_config: Optional[TokenizerPoolConfig] = None
|
|
|
|
# Whether to profile Ray workers with nsight, see https://docs.ray.io/en/latest/ray-observability/user-guides/profiling.html#profiling-nsight-profiler.
|
|
ray_workers_use_nsight: bool = False
|
|
|
|
# ray distributed model workers placement group.
|
|
placement_group: Optional["PlacementGroup"] = None
|
|
|
|
# Backend to use for distributed model
|
|
# workers, either "ray" or "mp" (multiprocessing). If the product
|
|
# of pipeline_parallel_size and tensor_parallel_size is less than
|
|
# or equal to the number of GPUs available, "mp" will be used to
|
|
# keep processing on a single host. Otherwise, this will default
|
|
# to "ray" if Ray is installed and fail otherwise. Note that tpu
|
|
# and hpu only support Ray for distributed inference.
|
|
distributed_executor_backend: Optional[Union[str,
|
|
Type["ExecutorBase"]]] = None
|
|
|
|
# the full name of the worker class to use. If "auto", the worker class
|
|
# will be determined based on the platform.
|
|
worker_cls: str = "auto"
|
|
sd_worker_cls: str = "auto"
|
|
|
|
world_size: int = field(init=False)
|
|
|
|
rank: int = 0
|
|
|
|
def compute_hash(self):
|
|
"""
|
|
Provide a hash that uniquely identifies all the configs
|
|
that affect the structure of the computation
|
|
graph from input ids/embeddings to the final hidden states,
|
|
excluding anything before input ids/embeddings and after
|
|
the final hidden states.
|
|
"""
|
|
factors: List[Any] = []
|
|
factors.append(self.pipeline_parallel_size)
|
|
factors.append(self.tensor_parallel_size)
|
|
return hashlib.sha256(str(factors).encode()).hexdigest()
|
|
|
|
def __post_init__(self) -> None:
|
|
self.world_size = self.pipeline_parallel_size * \
|
|
self.tensor_parallel_size
|
|
|
|
if self.worker_use_ray:
|
|
if self.distributed_executor_backend is None:
|
|
self.distributed_executor_backend = "ray"
|
|
elif not self.use_ray:
|
|
raise ValueError(f"worker-use-ray can't be used with "
|
|
f"distributed executor backend "
|
|
f"'{self.distributed_executor_backend}'.")
|
|
ray_only_devices = ["tpu", "hpu"]
|
|
from vllm.platforms import current_platform
|
|
if (current_platform.device_type in ray_only_devices
|
|
and self.world_size > 1):
|
|
if self.distributed_executor_backend is None:
|
|
self.distributed_executor_backend = "ray"
|
|
if self.distributed_executor_backend != "ray":
|
|
raise ValueError(
|
|
f"{current_platform.device_type.upper()} backend only "
|
|
"supports Ray for distributed inference.")
|
|
|
|
if self.distributed_executor_backend is None and self.world_size > 1:
|
|
# We use multiprocessing by default if world_size fits on the
|
|
# current node and we aren't in a ray placement group.
|
|
|
|
from vllm.executor import ray_utils
|
|
backend = "mp"
|
|
ray_found = ray_utils.ray_is_available()
|
|
if current_platform.is_neuron():
|
|
# neuron uses single process to control multiple devices
|
|
backend = "uni"
|
|
elif (current_platform.is_cuda()
|
|
and cuda_device_count_stateless() < self.world_size):
|
|
if not ray_found:
|
|
raise ValueError("Unable to load Ray which is "
|
|
"required for multi-node inference, "
|
|
"please install Ray with `pip install "
|
|
"ray`.") from ray_utils.ray_import_err
|
|
backend = "ray"
|
|
elif ray_found:
|
|
if self.placement_group:
|
|
backend = "ray"
|
|
else:
|
|
from ray import is_initialized as ray_is_initialized
|
|
if ray_is_initialized():
|
|
from ray.util import get_current_placement_group
|
|
if get_current_placement_group():
|
|
backend = "ray"
|
|
self.distributed_executor_backend = backend
|
|
logger.info("Defaulting to use %s for distributed inference",
|
|
backend)
|
|
|
|
self._verify_args()
|
|
|
|
@property
|
|
def use_ray(self) -> bool:
|
|
return self.distributed_executor_backend == "ray" or (
|
|
isinstance(self.distributed_executor_backend, type)
|
|
and self.distributed_executor_backend.uses_ray)
|
|
|
|
def _verify_args(self) -> None:
|
|
# Lazy import to avoid circular import
|
|
from vllm.executor.executor_base import ExecutorBase
|
|
from vllm.platforms import current_platform
|
|
if self.distributed_executor_backend not in (
|
|
"ray", "mp", "uni",
|
|
"external_launcher", None) and not (isinstance(
|
|
self.distributed_executor_backend, type) and issubclass(
|
|
self.distributed_executor_backend, ExecutorBase)):
|
|
raise ValueError(
|
|
"Unrecognized distributed executor backend "
|
|
f"{self.distributed_executor_backend}. Supported "
|
|
"values are 'ray', 'mp' 'uni', 'external_launcher' or"
|
|
" custom ExecutorBase subclass.")
|
|
if self.use_ray:
|
|
from vllm.executor import ray_utils
|
|
ray_utils.assert_ray_available()
|
|
if current_platform.is_rocm():
|
|
self.disable_custom_all_reduce = True
|
|
logger.info(
|
|
"Disabled the custom all-reduce kernel because it is not "
|
|
"supported on AMD GPUs.")
|
|
if self.ray_workers_use_nsight and not self.use_ray:
|
|
raise ValueError("Unable to use nsight profiling unless workers "
|
|
"run with Ray.")
|
|
|
|
|
|
@dataclass
|
|
class SchedulerConfig:
|
|
"""Scheduler configuration."""
|
|
|
|
runner_type: str = "generate" # The runner type to launch for the model.
|
|
|
|
# Maximum number of tokens to be processed in a single iteration.
|
|
max_num_batched_tokens: int = field(default=None) # type: ignore
|
|
|
|
# Maximum number of sequences to be processed in a single iteration.
|
|
max_num_seqs: int = 128
|
|
|
|
# Maximum length of a sequence (including prompt and generated text).
|
|
max_model_len: int = 8192
|
|
|
|
# The number of slots to allocate per sequence per
|
|
# step, beyond the known token ids. This is used in speculative
|
|
# decoding to store KV activations of tokens which may or may not be
|
|
# accepted.
|
|
num_lookahead_slots: int = 0
|
|
|
|
# Apply a delay (of delay factor multiplied by previous
|
|
# prompt latency) before scheduling next prompt.
|
|
delay_factor: float = 0.0
|
|
|
|
# If True, prefill requests can be chunked based
|
|
# on the remaining max_num_batched_tokens.
|
|
enable_chunked_prefill: bool = False
|
|
|
|
is_multimodal_model: bool = False
|
|
|
|
# NOTE: The following multimodal encoder budget will be initialized to
|
|
# max_num_batched_tokens and overridden in case max multimodal embedding
|
|
# size is larger.
|
|
# TODO (ywang96): Make these configurable.
|
|
# Multimodal encoder compute budget, only used in V1
|
|
max_num_encoder_input_tokens: int = field(default=None) # type: ignore
|
|
|
|
# Multimodal encoder cache size, only used in V1
|
|
encoder_cache_size: int = field(default=None) # type: ignore
|
|
|
|
# Whether to perform preemption by swapping or
|
|
# recomputation. If not specified, we determine the mode as follows:
|
|
# We use recomputation by default since it incurs lower overhead than
|
|
# swapping. However, when the sequence group has multiple sequences
|
|
# (e.g., beam search), recomputation is not currently supported. In
|
|
# such a case, we use swapping instead.
|
|
preemption_mode: Optional[str] = None
|
|
|
|
num_scheduler_steps: int = 1
|
|
|
|
multi_step_stream_outputs: bool = False
|
|
|
|
# Private API. If used, scheduler sends delta data to
|
|
# workers instead of an entire data. It should be enabled only
|
|
# when SPMD worker architecture is enabled. I.e.,
|
|
# VLLM_USE_RAY_SPMD_WORKER=1
|
|
send_delta_data: bool = False
|
|
|
|
# The scheduling policy to use. "fcfs" (default) or "priority".
|
|
policy: str = "fcfs"
|
|
|
|
chunked_prefill_enabled: bool = field(init=False)
|
|
|
|
def compute_hash(self) -> str:
|
|
"""
|
|
WARNING: Whenever a new field is added to this config,
|
|
ensure that it is included in the factors list if
|
|
it affects the computation graph.
|
|
|
|
Provide a hash that uniquely identifies all the configs
|
|
that affect the structure of the computation
|
|
graph from input ids/embeddings to the final hidden states,
|
|
excluding anything before input ids/embeddings and after
|
|
the final hidden states.
|
|
"""
|
|
# no factors to consider.
|
|
# this config will not affect the computation graph.
|
|
factors: List[Any] = []
|
|
hash_str = hashlib.md5(str(factors).encode()).hexdigest()
|
|
return hash_str
|
|
|
|
def __post_init__(self) -> None:
|
|
if self.max_num_batched_tokens is None:
|
|
if self.enable_chunked_prefill:
|
|
if self.num_scheduler_steps > 1:
|
|
# Multi-step Chunked-Prefill doesn't allow prompt-chunking
|
|
# for now. Have max_num_batched_tokens set to max_model_len
|
|
# so we don't reject sequences on account of a short
|
|
# max_num_batched_tokens.
|
|
self.max_num_batched_tokens = max(self.max_model_len, 2048)
|
|
else:
|
|
# This value is chosen to have a balance between ITL
|
|
# and TTFT. Note it is not optimized for throughput.
|
|
self.max_num_batched_tokens = 2048
|
|
else:
|
|
# If max_model_len is too short, use 2048 as the default value
|
|
# for higher throughput.
|
|
self.max_num_batched_tokens = max(self.max_model_len, 2048)
|
|
|
|
if self.runner_type == "pooling":
|
|
# Choose specific value for higher throughput
|
|
self.max_num_batched_tokens = max(
|
|
self.max_num_batched_tokens,
|
|
_POOLING_MODEL_MAX_NUM_BATCHED_TOKENS,
|
|
)
|
|
if self.is_multimodal_model:
|
|
# The value needs to be at least the number of multimodal tokens
|
|
self.max_num_batched_tokens = max(
|
|
self.max_num_batched_tokens,
|
|
_MULTIMODAL_MODEL_MAX_NUM_BATCHED_TOKENS,
|
|
)
|
|
|
|
self.max_num_encoder_input_tokens = self.max_num_batched_tokens
|
|
self.encoder_cache_size = self.max_num_batched_tokens
|
|
|
|
if self.enable_chunked_prefill:
|
|
logger.info(
|
|
"Chunked prefill is enabled with max_num_batched_tokens=%d.",
|
|
self.max_num_batched_tokens)
|
|
|
|
self.chunked_prefill_enabled = self.enable_chunked_prefill
|
|
self._verify_args()
|
|
|
|
def _verify_args(self) -> None:
|
|
if (self.max_num_batched_tokens < self.max_model_len
|
|
and not self.chunked_prefill_enabled):
|
|
raise ValueError(
|
|
f"max_num_batched_tokens ({self.max_num_batched_tokens}) is "
|
|
f"smaller than max_model_len ({self.max_model_len}). "
|
|
"This effectively limits the maximum sequence length to "
|
|
"max_num_batched_tokens and makes vLLM reject longer "
|
|
"sequences. Please increase max_num_batched_tokens or "
|
|
"decrease max_model_len.")
|
|
|
|
if self.max_num_batched_tokens < self.max_num_seqs:
|
|
raise ValueError(
|
|
f"max_num_batched_tokens ({self.max_num_batched_tokens}) must "
|
|
"be greater than or equal to max_num_seqs "
|
|
f"({self.max_num_seqs}).")
|
|
|
|
if self.num_lookahead_slots < 0:
|
|
raise ValueError(
|
|
"num_lookahead_slots "
|
|
f"({self.num_lookahead_slots}) must be greater than or "
|
|
"equal to 0.")
|
|
|
|
if self.num_scheduler_steps < 1:
|
|
raise ValueError(
|
|
"num_scheduler_steps "
|
|
f"({self.num_scheduler_steps}) must be greater than or "
|
|
"equal to 1.")
|
|
|
|
@property
|
|
def is_multi_step(self) -> bool:
|
|
return self.num_scheduler_steps > 1
|
|
|
|
|
|
class DeviceConfig:
|
|
device: Optional[torch.device]
|
|
device_type: str
|
|
|
|
def compute_hash(self) -> str:
|
|
"""
|
|
WARNING: Whenever a new field is added to this config,
|
|
ensure that it is included in the factors list if
|
|
it affects the computation graph.
|
|
|
|
Provide a hash that uniquely identifies all the configs
|
|
that affect the structure of the computation
|
|
graph from input ids/embeddings to the final hidden states,
|
|
excluding anything before input ids/embeddings and after
|
|
the final hidden states.
|
|
"""
|
|
# no factors to consider.
|
|
# the device/platform information will be summarized
|
|
# by torch/vllm automatically.
|
|
factors: List[Any] = []
|
|
hash_str = hashlib.md5(str(factors).encode()).hexdigest()
|
|
return hash_str
|
|
|
|
def __init__(self, device: str = "auto") -> None:
|
|
if device == "auto":
|
|
# Automated device type detection
|
|
from vllm.platforms import current_platform
|
|
self.device_type = current_platform.device_type
|
|
if not self.device_type:
|
|
raise RuntimeError("Failed to infer device type")
|
|
else:
|
|
# Device type is assigned explicitly
|
|
self.device_type = device
|
|
|
|
# Some device types require processing inputs on CPU
|
|
if self.device_type in ["neuron", "openvino"]:
|
|
self.device = torch.device("cpu")
|
|
elif self.device_type in ["tpu"]:
|
|
self.device = None
|
|
else:
|
|
# Set device with device type
|
|
self.device = torch.device(self.device_type)
|
|
|
|
|
|
class SpeculativeConfig:
|
|
"""Configuration for speculative decoding.
|
|
|
|
The configuration is currently specialized to draft-model speculative
|
|
decoding with top-1 proposals.
|
|
"""
|
|
|
|
def compute_hash(self) -> str:
|
|
"""
|
|
WARNING: Whenever a new field is added to this config,
|
|
ensure that it is included in the factors list if
|
|
it affects the computation graph.
|
|
|
|
Provide a hash that uniquely identifies all the configs
|
|
that affect the structure of the computation
|
|
graph from input ids/embeddings to the final hidden states,
|
|
excluding anything before input ids/embeddings and after
|
|
the final hidden states.
|
|
"""
|
|
# no factors to consider.
|
|
# spec decode does not use `torch.compile` yet.
|
|
factors: List[Any] = []
|
|
hash_str = hashlib.md5(str(factors).encode()).hexdigest()
|
|
return hash_str
|
|
|
|
@staticmethod
|
|
def maybe_create_spec_config(
|
|
target_model_config: ModelConfig,
|
|
target_parallel_config: ParallelConfig,
|
|
target_dtype: str,
|
|
speculative_model: Optional[str],
|
|
speculative_model_quantization: Optional[str],
|
|
speculative_draft_tensor_parallel_size: Optional[int],
|
|
num_speculative_tokens: Optional[int],
|
|
speculative_disable_mqa_scorer: Optional[bool],
|
|
speculative_max_model_len: Optional[int],
|
|
enable_chunked_prefill: bool,
|
|
disable_log_stats: bool,
|
|
speculative_disable_by_batch_size: Optional[int],
|
|
ngram_prompt_lookup_max: Optional[int],
|
|
ngram_prompt_lookup_min: Optional[int],
|
|
draft_token_acceptance_method: str,
|
|
typical_acceptance_sampler_posterior_threshold: Optional[float],
|
|
typical_acceptance_sampler_posterior_alpha: Optional[float],
|
|
disable_logprobs: Optional[bool],
|
|
) -> Optional["SpeculativeConfig"]:
|
|
"""Create a SpeculativeConfig if possible, else return None.
|
|
|
|
This function attempts to create a SpeculativeConfig object based on the
|
|
provided parameters. If the necessary conditions are met, it returns an
|
|
instance of SpeculativeConfig. Otherwise, it returns None.
|
|
|
|
Args:
|
|
target_model_config (ModelConfig): The configuration of the target
|
|
model.
|
|
target_parallel_config (ParallelConfig): The parallel configuration
|
|
for the target model.
|
|
target_dtype (str): The data type used for the target model.
|
|
speculative_model (Optional[str]): The name of the speculative
|
|
model, if provided.
|
|
speculative_model_quantization (Optional[str]): Quantization method
|
|
that was used to quantize the speculative model weights. If
|
|
None, we assume the model weights are not quantized.
|
|
speculative_draft_tensor_parallel_size (Optional[int]): The degree
|
|
of the tensor parallelism for the draft model.
|
|
num_speculative_tokens (Optional[int]): The number of speculative
|
|
tokens, if provided. Will default to the number in the draft
|
|
model config if present, otherwise is required.
|
|
speculative_disable_mqa_scorer (Optional[bool]): Disable the MQA
|
|
scorer for the speculative model and fall back to batch
|
|
expansion for scoring.
|
|
speculative_max_model_len (Optional[int]): The maximum model len of
|
|
the speculative model. Used when testing the ability to skip
|
|
speculation for some sequences.
|
|
enable_chunked_prefill (bool): Whether vLLM is configured to use
|
|
chunked prefill or not. Used for raising an error since its not
|
|
yet compatible with spec decode.
|
|
speculative_disable_by_batch_size (Optional[int]): Disable
|
|
speculative decoding for new incoming requests when the number
|
|
of enqueue requests is larger than this value, if provided.
|
|
ngram_prompt_lookup_max (Optional[int]): Max size of ngram token
|
|
window, if provided.
|
|
ngram_prompt_lookup_min (Optional[int]): Min size of ngram token
|
|
window, if provided.
|
|
draft_token_acceptance_method (str): The method to use for
|
|
accepting draft tokens. This can take two possible
|
|
values 'rejection_sampler' and 'typical_acceptance_sampler'
|
|
for RejectionSampler and TypicalAcceptanceSampler
|
|
respectively.
|
|
typical_acceptance_sampler_posterior_threshold (Optional[float]):
|
|
A threshold value that sets a lower bound on the posterior
|
|
probability of a token in the target model for it to be
|
|
accepted. This threshold is used only when we use the
|
|
TypicalAcceptanceSampler for token acceptance.
|
|
typical_acceptance_sampler_posterior_alpha (Optional[float]):
|
|
A scaling factor for the entropy-based threshold in the
|
|
TypicalAcceptanceSampler.
|
|
disable_logprobs (Optional[bool]): If set to True, token log
|
|
probabilities are not returned during speculative decoding.
|
|
If set to False, token log probabilities are returned
|
|
according to the log probability settings in SamplingParams.
|
|
If not specified, it defaults to True.
|
|
|
|
Returns:
|
|
Optional["SpeculativeConfig"]: An instance of SpeculativeConfig if
|
|
the necessary conditions are met, else None.
|
|
"""
|
|
|
|
if speculative_model is None:
|
|
if num_speculative_tokens is not None:
|
|
raise ValueError("num_speculative_tokens was provided without "
|
|
"speculative_model.")
|
|
return None
|
|
|
|
if (speculative_disable_by_batch_size is not None
|
|
and speculative_disable_by_batch_size < 2):
|
|
raise ValueError("Expect the batch size threshold of disabling "
|
|
"speculative decoding is > 1, but got "
|
|
f"{speculative_disable_by_batch_size=}")
|
|
|
|
# TODO: The user should be able to specify revision/max model len
|
|
# for the draft model. It is not currently supported.
|
|
draft_revision = None
|
|
draft_code_revision = None
|
|
draft_quantization = speculative_model_quantization
|
|
|
|
if speculative_model == "[ngram]":
|
|
if ngram_prompt_lookup_min is None:
|
|
ngram_prompt_lookup_min = 1
|
|
if ngram_prompt_lookup_max is None or ngram_prompt_lookup_max < 1:
|
|
raise ValueError(f"{ngram_prompt_lookup_max=} must be > 0")
|
|
if ngram_prompt_lookup_min < 1:
|
|
raise ValueError(f"{ngram_prompt_lookup_min=} must be > 0")
|
|
if ngram_prompt_lookup_min > ngram_prompt_lookup_max:
|
|
raise ValueError(f"{ngram_prompt_lookup_min=} cannot be "
|
|
f"larger than {ngram_prompt_lookup_max=}")
|
|
|
|
# TODO: current we still need extract vocab_size from target model
|
|
# config, in future, we may try refactor it out, and set
|
|
# draft related config as None here.
|
|
draft_model_config = target_model_config
|
|
draft_parallel_config = target_parallel_config
|
|
else:
|
|
ngram_prompt_lookup_max = 0
|
|
ngram_prompt_lookup_min = 0
|
|
draft_model_config = ModelConfig(
|
|
model=speculative_model,
|
|
task="draft",
|
|
tokenizer=target_model_config.tokenizer,
|
|
tokenizer_mode=target_model_config.tokenizer_mode,
|
|
trust_remote_code=target_model_config.trust_remote_code,
|
|
allowed_local_media_path=target_model_config.
|
|
allowed_local_media_path,
|
|
dtype=target_model_config.dtype,
|
|
seed=target_model_config.seed,
|
|
revision=draft_revision,
|
|
code_revision=draft_code_revision,
|
|
tokenizer_revision=target_model_config.tokenizer_revision,
|
|
max_model_len=None,
|
|
spec_target_max_model_len=target_model_config.max_model_len,
|
|
quantization=draft_quantization,
|
|
enforce_eager=target_model_config.enforce_eager,
|
|
max_seq_len_to_capture=target_model_config.
|
|
max_seq_len_to_capture,
|
|
max_logprobs=target_model_config.max_logprobs,
|
|
)
|
|
|
|
draft_hf_config = draft_model_config.hf_config
|
|
|
|
if (num_speculative_tokens is not None
|
|
and hasattr(draft_hf_config, "num_lookahead_tokens")):
|
|
draft_hf_config.num_lookahead_tokens = num_speculative_tokens
|
|
|
|
n_predict = getattr(draft_hf_config, "n_predict", None)
|
|
if n_predict is not None:
|
|
if num_speculative_tokens is None:
|
|
# Default to max value defined in draft model config.
|
|
num_speculative_tokens = n_predict
|
|
elif num_speculative_tokens > n_predict:
|
|
# Verify provided value doesn't exceed the maximum
|
|
# supported by the draft model.
|
|
raise ValueError(
|
|
"This speculative model supports a maximum of "
|
|
f"num_speculative_tokens={n_predict}, but "
|
|
f"{num_speculative_tokens=} was provided.")
|
|
|
|
if enable_chunked_prefill and draft_hf_config.model_type in (
|
|
"medusa", "mlp_speculator", "eagle"):
|
|
raise ValueError(
|
|
"Chunked prefill and hidden-state based draft models are "
|
|
"not compatible.")
|
|
|
|
speculative_draft_tensor_parallel_size = \
|
|
SpeculativeConfig._verify_and_get_draft_model_tensor_parallel_size(
|
|
target_parallel_config,
|
|
speculative_draft_tensor_parallel_size,
|
|
draft_hf_config
|
|
)
|
|
|
|
draft_model_config.max_model_len = (
|
|
SpeculativeConfig._maybe_override_draft_max_model_len(
|
|
speculative_max_model_len,
|
|
draft_model_config.max_model_len,
|
|
target_model_config.max_model_len,
|
|
))
|
|
|
|
draft_parallel_config = (
|
|
SpeculativeConfig.create_draft_parallel_config(
|
|
target_parallel_config,
|
|
speculative_draft_tensor_parallel_size, draft_hf_config))
|
|
|
|
if num_speculative_tokens is None:
|
|
raise ValueError(
|
|
"num_speculative_tokens must be provided with "
|
|
"speculative_model unless the draft model config contains an "
|
|
"n_predict parameter.")
|
|
|
|
if typical_acceptance_sampler_posterior_threshold is None:
|
|
typical_acceptance_sampler_posterior_threshold = 0.09
|
|
if typical_acceptance_sampler_posterior_alpha is None:
|
|
typical_acceptance_sampler_posterior_alpha = 0.3
|
|
if disable_logprobs is None:
|
|
disable_logprobs = True
|
|
|
|
return SpeculativeConfig(
|
|
draft_model_config,
|
|
draft_parallel_config,
|
|
num_speculative_tokens,
|
|
speculative_disable_mqa_scorer,
|
|
speculative_disable_by_batch_size,
|
|
ngram_prompt_lookup_max,
|
|
ngram_prompt_lookup_min,
|
|
draft_token_acceptance_method=draft_token_acceptance_method,
|
|
typical_acceptance_sampler_posterior_threshold=\
|
|
typical_acceptance_sampler_posterior_threshold,
|
|
typical_acceptance_sampler_posterior_alpha=\
|
|
typical_acceptance_sampler_posterior_alpha,
|
|
disable_logprobs=disable_logprobs,
|
|
disable_log_stats=disable_log_stats,
|
|
)
|
|
|
|
@staticmethod
|
|
def _maybe_override_draft_max_model_len(
|
|
speculative_max_model_len: Optional[int],
|
|
draft_max_model_len: int,
|
|
target_max_model_len: int,
|
|
) -> int:
|
|
"""Determine the max sequence len for the draft model. This is usually
|
|
the draft_max_model_len, but may be the target_max_model_len if it is
|
|
less than the draft_max_model_len, or may be speculative_max_model_len
|
|
if it is specified.
|
|
|
|
This is necessary so that sequences do not exceed the capacity of the
|
|
draft model or the target model.
|
|
|
|
speculative_max_model_len is mainly used for testing that sequences can
|
|
skip speculation.
|
|
"""
|
|
|
|
if speculative_max_model_len is not None:
|
|
|
|
if speculative_max_model_len > draft_max_model_len:
|
|
raise ValueError(f"{speculative_max_model_len=} cannot be "
|
|
f"larger than {draft_max_model_len=}")
|
|
|
|
if speculative_max_model_len > target_max_model_len:
|
|
raise ValueError(f"{speculative_max_model_len=} cannot be "
|
|
f"larger than {target_max_model_len=}")
|
|
|
|
return speculative_max_model_len
|
|
|
|
return min(
|
|
draft_max_model_len,
|
|
target_max_model_len,
|
|
)
|
|
|
|
@staticmethod
|
|
def _verify_and_get_draft_model_tensor_parallel_size(
|
|
target_parallel_config: ParallelConfig,
|
|
speculative_draft_tensor_parallel_size: Optional[int],
|
|
draft_hf_config: PretrainedConfig) -> int:
|
|
"""
|
|
Verifies and adjusts the tensor parallel size for a draft model
|
|
specified using speculative_draft_tensor_parallel_size.
|
|
"""
|
|
# If speculative_draft_tensor_parallel_size is unset then set it
|
|
# appropriately else verify that it is set correctly.
|
|
if speculative_draft_tensor_parallel_size is None:
|
|
if draft_hf_config.model_type == "mlp_speculator":
|
|
speculative_draft_tensor_parallel_size = 1
|
|
if target_parallel_config.tensor_parallel_size > 1:
|
|
logger.warning(
|
|
"MLPSpeculator cannot currently be run with tp>1; "
|
|
"setting speculative_draft_tensor_parallel_size=1")
|
|
else:
|
|
speculative_draft_tensor_parallel_size = \
|
|
target_parallel_config.tensor_parallel_size
|
|
elif speculative_draft_tensor_parallel_size not in (
|
|
1, target_parallel_config.tensor_parallel_size):
|
|
raise ValueError(
|
|
f"{speculative_draft_tensor_parallel_size=} cannot be "
|
|
f"other value than 1 or target model tensor_parallel_size")
|
|
return speculative_draft_tensor_parallel_size
|
|
|
|
@staticmethod
|
|
def create_draft_parallel_config(
|
|
target_parallel_config: ParallelConfig,
|
|
speculative_draft_tensor_parallel_size: int,
|
|
draft_hf_config: PretrainedConfig,
|
|
) -> ParallelConfig:
|
|
"""Create a parallel config for use by the draft worker.
|
|
|
|
This is mostly a copy of the target parallel config, except the tp_size.
|
|
"""
|
|
draft_parallel_config = ParallelConfig(
|
|
pipeline_parallel_size=target_parallel_config.
|
|
pipeline_parallel_size,
|
|
tensor_parallel_size=speculative_draft_tensor_parallel_size,
|
|
distributed_executor_backend=target_parallel_config.
|
|
distributed_executor_backend,
|
|
max_parallel_loading_workers=target_parallel_config.
|
|
max_parallel_loading_workers,
|
|
disable_custom_all_reduce=target_parallel_config.
|
|
disable_custom_all_reduce,
|
|
tokenizer_pool_config=target_parallel_config.tokenizer_pool_config,
|
|
ray_workers_use_nsight=target_parallel_config.
|
|
ray_workers_use_nsight,
|
|
placement_group=target_parallel_config.placement_group,
|
|
)
|
|
|
|
return draft_parallel_config
|
|
|
|
def __init__(
|
|
self,
|
|
draft_model_config: ModelConfig,
|
|
draft_parallel_config: ParallelConfig,
|
|
num_speculative_tokens: int,
|
|
speculative_disable_mqa_scorer: Optional[bool],
|
|
speculative_disable_by_batch_size: Optional[int],
|
|
ngram_prompt_lookup_max: Optional[int],
|
|
ngram_prompt_lookup_min: Optional[int],
|
|
draft_token_acceptance_method: str,
|
|
typical_acceptance_sampler_posterior_threshold: float,
|
|
typical_acceptance_sampler_posterior_alpha: float,
|
|
disable_logprobs: bool,
|
|
disable_log_stats: bool,
|
|
):
|
|
"""Create a SpeculativeConfig object.
|
|
|
|
Args:
|
|
draft_model_config: ModelConfig for the draft model.
|
|
draft_parallel_config: ParallelConfig for the draft model.
|
|
num_speculative_tokens: The number of tokens to sample from the
|
|
draft model before scoring with the target model.
|
|
speculative_disable_by_batch_size: Disable speculative
|
|
decoding for new incoming requests when the number of
|
|
enqueue requests is larger than this value.
|
|
ngram_prompt_lookup_max: Max size of ngram token window.
|
|
ngram_prompt_lookup_min: Min size of ngram token window.
|
|
draft_token_acceptance_method (str): The method to use for
|
|
accepting draft tokens. This can take two possible
|
|
values 'rejection_sampler' and 'typical_acceptance_sampler'
|
|
for RejectionSampler and TypicalAcceptanceSampler
|
|
respectively.
|
|
typical_acceptance_sampler_posterior_threshold (Optional[float]):
|
|
A threshold value that sets a lower bound on the posterior
|
|
probability of a token in the target model for it to be
|
|
accepted. This threshold is used only when we use the
|
|
TypicalAcceptanceSampler for token acceptance.
|
|
typical_acceptance_sampler_posterior_alpha (Optional[float]):
|
|
A scaling factor for the entropy-based threshold in the
|
|
TypicalAcceptanceSampler.
|
|
disable_logprobs: If set to True, token log probabilities will not
|
|
be returned even if requested by sampling parameters. This
|
|
reduces latency by skipping logprob calculation in proposal
|
|
sampling, target sampling, and after accepted tokens are
|
|
determined. If set to False, log probabilities will be
|
|
returned.
|
|
disable_log_stats: Whether to disable periodic printing of stage
|
|
times in speculative decoding.
|
|
"""
|
|
self.draft_model_config = draft_model_config
|
|
self.draft_parallel_config = draft_parallel_config
|
|
self.num_speculative_tokens = num_speculative_tokens
|
|
self.speculative_disable_mqa_scorer = speculative_disable_mqa_scorer
|
|
self.speculative_disable_by_batch_size = \
|
|
speculative_disable_by_batch_size
|
|
self.ngram_prompt_lookup_max = ngram_prompt_lookup_max or 0
|
|
self.ngram_prompt_lookup_min = ngram_prompt_lookup_min or 0
|
|
self.draft_token_acceptance_method = draft_token_acceptance_method
|
|
self.typical_acceptance_sampler_posterior_threshold = \
|
|
typical_acceptance_sampler_posterior_threshold
|
|
self.typical_acceptance_sampler_posterior_alpha = \
|
|
typical_acceptance_sampler_posterior_alpha
|
|
self.disable_logprobs = disable_logprobs
|
|
self.disable_log_stats = disable_log_stats
|
|
|
|
self._verify_args()
|
|
|
|
def _verify_args(self) -> None:
|
|
if self.num_speculative_tokens <= 0:
|
|
raise ValueError("Expected num_speculative_tokens to be greater "
|
|
f"than zero ({self.num_speculative_tokens}).")
|
|
|
|
if self.draft_model_config:
|
|
self.draft_model_config.verify_with_parallel_config(
|
|
self.draft_parallel_config)
|
|
# Validate and set draft token acceptance related settings.
|
|
|
|
if (self.draft_token_acceptance_method is None):
|
|
raise ValueError("draft_token_acceptance_method is not set. "
|
|
"Expected values are rejection_sampler or "
|
|
"typical_acceptance_sampler.")
|
|
|
|
if (self.draft_token_acceptance_method != 'rejection_sampler'
|
|
and self.draft_token_acceptance_method !=
|
|
'typical_acceptance_sampler'):
|
|
raise ValueError(
|
|
"Expected draft_token_acceptance_method to be either "
|
|
"rejection_sampler or typical_acceptance_sampler. Instead it "
|
|
f"is {self.draft_token_acceptance_method}")
|
|
|
|
if (self.typical_acceptance_sampler_posterior_threshold < 0
|
|
or self.typical_acceptance_sampler_posterior_alpha < 0):
|
|
raise ValueError(
|
|
"Expected typical_acceptance_sampler_posterior_threshold "
|
|
"and typical_acceptance_sampler_posterior_alpha to be > 0. "
|
|
"Instead found "
|
|
f"typical_acceptance_sampler_posterior_threshold = "
|
|
f"{self.typical_acceptance_sampler_posterior_threshold} and "
|
|
f"typical_acceptance_sampler_posterior_alpha = "
|
|
f"{self.typical_acceptance_sampler_posterior_alpha}")
|
|
|
|
@property
|
|
def num_lookahead_slots(self) -> int:
|
|
"""The number of additional slots the scheduler should allocate per
|
|
step, in addition to the slots allocated for each known token.
|
|
|
|
This is equal to the number of speculative tokens, as each speculative
|
|
token must be scored.
|
|
"""
|
|
return self.num_speculative_tokens
|
|
|
|
def __repr__(self) -> str:
|
|
if self.ngram_prompt_lookup_max > 0:
|
|
draft_model = "[ngram]"
|
|
else:
|
|
draft_model = self.draft_model_config.model
|
|
num_spec_tokens = self.num_speculative_tokens
|
|
return f"SpeculativeConfig({draft_model=}, {num_spec_tokens=})"
|
|
|
|
|
|
@dataclass
|
|
class LoRAConfig:
|
|
max_lora_rank: int
|
|
max_loras: int
|
|
fully_sharded_loras: bool = False
|
|
max_cpu_loras: Optional[int] = None
|
|
lora_dtype: Optional[Union[torch.dtype, str]] = None
|
|
lora_extra_vocab_size: int = 256
|
|
# This is a constant.
|
|
lora_vocab_padding_size: ClassVar[int] = 256
|
|
long_lora_scaling_factors: Optional[Tuple[float]] = None
|
|
bias_enabled: bool = False
|
|
|
|
def compute_hash(self) -> str:
|
|
"""
|
|
WARNING: Whenever a new field is added to this config,
|
|
ensure that it is included in the factors list if
|
|
it affects the computation graph.
|
|
|
|
Provide a hash that uniquely identifies all the configs
|
|
that affect the structure of the computation
|
|
graph from input ids/embeddings to the final hidden states,
|
|
excluding anything before input ids/embeddings and after
|
|
the final hidden states.
|
|
"""
|
|
# no factors to consider.
|
|
# LoRA is not compatible with `torch.compile` .
|
|
factors: List[Any] = []
|
|
hash_str = hashlib.md5(str(factors).encode()).hexdigest()
|
|
return hash_str
|
|
|
|
def __post_init__(self):
|
|
# Setting the maximum rank to 256 should be able to satisfy the vast
|
|
# majority of applications.
|
|
possible_max_ranks = (8, 16, 32, 64, 128, 256)
|
|
possible_lora_extra_vocab_size = (0, 256, 512)
|
|
if self.max_lora_rank not in possible_max_ranks:
|
|
raise ValueError(
|
|
f"max_lora_rank ({self.max_lora_rank}) must be one of "
|
|
f"{possible_max_ranks}.")
|
|
if self.lora_extra_vocab_size not in possible_lora_extra_vocab_size:
|
|
raise ValueError(
|
|
f"lora_extra_vocab_size ({self.lora_extra_vocab_size}) "
|
|
f"must be one of {possible_lora_extra_vocab_size}.")
|
|
if self.max_loras < 1:
|
|
raise ValueError(f"max_loras ({self.max_loras}) must be >= 1.")
|
|
if self.max_cpu_loras is None:
|
|
self.max_cpu_loras = self.max_loras
|
|
elif self.max_cpu_loras < self.max_loras:
|
|
raise ValueError(
|
|
f"max_cpu_loras ({self.max_cpu_loras}) must be >= "
|
|
f"max_loras ({self.max_loras})")
|
|
|
|
def verify_with_cache_config(self, cache_config: CacheConfig):
|
|
# TODO LoRA supports CPU offload.
|
|
if cache_config.cpu_offload_gb > 0:
|
|
raise ValueError("CPU offload is not supported with LoRA yet.")
|
|
|
|
def verify_with_model_config(self, model_config: ModelConfig):
|
|
if self.lora_dtype in (None, "auto"):
|
|
self.lora_dtype = model_config.dtype
|
|
elif isinstance(self.lora_dtype, str):
|
|
self.lora_dtype = getattr(torch, self.lora_dtype)
|
|
if model_config.quantization and model_config.quantization not in [
|
|
"awq", "gptq"
|
|
]:
|
|
# TODO support marlin
|
|
logger.warning("%s quantization is not tested with LoRA yet.",
|
|
model_config.quantization)
|
|
|
|
def verify_with_scheduler_config(self, scheduler_config: SchedulerConfig):
|
|
# Reminder: Please update docs/source/features/compatibility_matrix.md
|
|
# If the feature combo become valid
|
|
if scheduler_config.chunked_prefill_enabled:
|
|
logger.warning("LoRA with chunked prefill is still experimental "
|
|
"and may be unstable.")
|
|
|
|
|
|
@dataclass
|
|
class PromptAdapterConfig:
|
|
max_prompt_adapters: int
|
|
max_prompt_adapter_token: int
|
|
max_cpu_prompt_adapters: Optional[int] = None
|
|
prompt_adapter_dtype: Optional[torch.dtype] = None
|
|
|
|
def compute_hash(self) -> str:
|
|
"""
|
|
WARNING: Whenever a new field is added to this config,
|
|
ensure that it is included in the factors list if
|
|
it affects the computation graph.
|
|
|
|
Provide a hash that uniquely identifies all the configs
|
|
that affect the structure of the computation
|
|
graph from input ids/embeddings to the final hidden states,
|
|
excluding anything before input ids/embeddings and after
|
|
the final hidden states.
|
|
"""
|
|
# no factors to consider.
|
|
# this config will not affect the computation graph.
|
|
factors: List[Any] = []
|
|
hash_str = hashlib.md5(str(factors).encode()).hexdigest()
|
|
return hash_str
|
|
|
|
def __post_init__(self):
|
|
|
|
if self.max_prompt_adapters < 1:
|
|
raise ValueError(f"max_prompt_adapters "
|
|
f"({self.max_prompt_adapters}) must be >= 1.")
|
|
if self.max_prompt_adapter_token == 0:
|
|
raise ValueError("max_prompt_adapter_token must be set.")
|
|
if self.max_cpu_prompt_adapters is None:
|
|
self.max_cpu_prompt_adapters = self.max_prompt_adapters
|
|
|
|
def verify_with_model_config(self, model_config: ModelConfig):
|
|
if self.prompt_adapter_dtype in (None, "auto"):
|
|
self.prompt_adapter_dtype = model_config.dtype
|
|
elif isinstance(self.prompt_adapter_dtype, str):
|
|
self.prompt_adapter_dtype = getattr(torch,
|
|
self.prompt_adapter_dtype)
|
|
|
|
|
|
@dataclass
|
|
class MultiModalConfig:
|
|
"""Controls the behavior of multimodal models."""
|
|
|
|
limit_per_prompt: Mapping[str, int] = field(default_factory=dict)
|
|
"""
|
|
The maximum number of input items allowed per prompt for each modality.
|
|
"""
|
|
|
|
def compute_hash(self) -> str:
|
|
"""
|
|
WARNING: Whenever a new field is added to this config,
|
|
ensure that it is included in the factors list if
|
|
it affects the computation graph.
|
|
|
|
Provide a hash that uniquely identifies all the configs
|
|
that affect the structure of the computation
|
|
graph from input ids/embeddings to the final hidden states,
|
|
excluding anything before input ids/embeddings and after
|
|
the final hidden states.
|
|
"""
|
|
# no factors to consider.
|
|
# this config will not affect the computation graph.
|
|
factors: List[Any] = []
|
|
hash_str = hashlib.md5(str(factors).encode()).hexdigest()
|
|
return hash_str
|
|
|
|
# TODO: Add configs to init vision tower or not.
|
|
|
|
|
|
@dataclass
|
|
class PoolerConfig:
|
|
"""Controls the behavior of output pooling in pooling models."""
|
|
|
|
pooling_type: Optional[str] = None
|
|
"""
|
|
The pooling method of the pooling model. This should be a key in
|
|
:class:`vllm.model_executor.layers.pooler.PoolingType`.
|
|
"""
|
|
|
|
normalize: Optional[bool] = None
|
|
"""
|
|
Whether to normalize the pooled outputs. Usually, this should be set to
|
|
``True`` for embedding outputs.
|
|
"""
|
|
|
|
softmax: Optional[bool] = None
|
|
"""
|
|
Whether to apply softmax to the pooled outputs. Usually, this should be set
|
|
to ``True`` for classification outputs.
|
|
"""
|
|
|
|
step_tag_id: Optional[int] = None
|
|
"""
|
|
If set, only the score corresponding to the ``step_tag_id`` in the
|
|
generated sentence should be returned. Otherwise, the scores for all tokens
|
|
are returned.
|
|
"""
|
|
|
|
returned_token_ids: Optional[List[int]] = None
|
|
"""
|
|
A list of indices for the vocabulary dimensions to be extracted,
|
|
such as the token IDs of ``good_token`` and ``bad_token`` in the
|
|
``math-shepherd-mistral-7b-prm`` model.
|
|
"""
|
|
|
|
def compute_hash(self) -> str:
|
|
"""
|
|
WARNING: Whenever a new field is added to this config,
|
|
ensure that it is included in the factors list if
|
|
it affects the computation graph.
|
|
|
|
Provide a hash that uniquely identifies all the configs
|
|
that affect the structure of the computation
|
|
graph from input ids/embeddings to the final hidden states,
|
|
excluding anything before input ids/embeddings and after
|
|
the final hidden states.
|
|
"""
|
|
# no factors to consider.
|
|
# this config will not affect the computation graph.
|
|
factors: List[Any] = []
|
|
hash_str = hashlib.md5(str(factors).encode()).hexdigest()
|
|
return hash_str
|
|
|
|
@staticmethod
|
|
def from_json(json_str: str) -> "PoolerConfig":
|
|
return PoolerConfig(**json.loads(json_str))
|
|
|
|
|
|
_STR_DTYPE_TO_TORCH_DTYPE = {
|
|
"half": torch.float16,
|
|
"float16": torch.float16,
|
|
"float": torch.float32,
|
|
"float32": torch.float32,
|
|
"bfloat16": torch.bfloat16,
|
|
}
|
|
|
|
_ROCM_NOT_SUPPORTED_DTYPE: List[str] = [] #
|
|
|
|
|
|
def _get_and_verify_dtype(
|
|
config: PretrainedConfig,
|
|
dtype: Union[str, torch.dtype],
|
|
) -> torch.dtype:
|
|
# NOTE: getattr(config, "torch_dtype", torch.float32) is not correct
|
|
# because config.torch_dtype can be None.
|
|
config_dtype = getattr(config, "torch_dtype", None)
|
|
if config_dtype is None:
|
|
config_dtype = torch.float32
|
|
|
|
if isinstance(dtype, str):
|
|
dtype = dtype.lower()
|
|
if dtype == "auto":
|
|
if config_dtype == torch.float32:
|
|
if config.model_type == "gemma2":
|
|
logger.info(
|
|
"For Gemma 2, we downcast float32 to bfloat16 instead "
|
|
"of float16 by default. Please specify `dtype` if you "
|
|
"want to use float16.")
|
|
torch_dtype = torch.bfloat16
|
|
else:
|
|
# Following the common practice, we use float16 for float32
|
|
# models.
|
|
torch_dtype = torch.float16
|
|
else:
|
|
torch_dtype = config_dtype
|
|
|
|
from vllm.platforms import current_platform
|
|
if (current_platform.is_cpu()
|
|
and current_platform.get_cpu_architecture()
|
|
== CpuArchEnum.POWERPC
|
|
and (config_dtype == torch.float16
|
|
or config_dtype == torch.float32)):
|
|
logger.info(
|
|
"For POWERPC, we cast models to bfloat16 instead of "
|
|
"using float16 by default. Float16 is not currently "
|
|
"supported for POWERPC.")
|
|
torch_dtype = torch.bfloat16
|
|
|
|
# TODO: change this condition to check if the platform support bf16
|
|
# instead of checking the OS. For instance M2 shall supports bf16
|
|
# already. But we need to modify `cpu_extension.cmake` to activate
|
|
# the feature in the build.
|
|
if (current_platform.is_cpu() and sys.platform.startswith("darwin")
|
|
and current_platform.get_cpu_architecture()
|
|
== CpuArchEnum.ARM and config_dtype == torch.bfloat16):
|
|
logger.info("For macOS with Apple Silicon, currently bfloat16 "
|
|
"is not supported. Setting dtype to float16.")
|
|
torch_dtype = torch.float16
|
|
|
|
if current_platform.is_hpu() and config_dtype == torch.float16:
|
|
logger.info(
|
|
"For HPU, we cast models to bfloat16 instead of"
|
|
"using float16 by default. Please specify `dtype` if you "
|
|
"want to use float16.")
|
|
torch_dtype = torch.bfloat16
|
|
else:
|
|
if dtype not in _STR_DTYPE_TO_TORCH_DTYPE:
|
|
raise ValueError(f"Unknown dtype: {dtype}")
|
|
torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype]
|
|
elif isinstance(dtype, torch.dtype):
|
|
torch_dtype = dtype
|
|
else:
|
|
raise ValueError(f"Unknown dtype: {dtype}")
|
|
|
|
# Verify the dtype.
|
|
if torch_dtype != config_dtype:
|
|
if torch_dtype == torch.float32:
|
|
# Upcasting to float32 is allowed.
|
|
logger.info("Upcasting %s to %s.", config_dtype, torch_dtype)
|
|
pass
|
|
elif config_dtype == torch.float32:
|
|
# Downcasting from float32 to float16 or bfloat16 is allowed.
|
|
logger.info("Downcasting %s to %s.", config_dtype, torch_dtype)
|
|
pass
|
|
else:
|
|
# Casting between float16 and bfloat16 is allowed with a warning.
|
|
logger.warning("Casting %s to %s.", config_dtype, torch_dtype)
|
|
|
|
return torch_dtype
|
|
|
|
|
|
def _get_and_verify_max_len(
|
|
hf_config: PretrainedConfig,
|
|
max_model_len: Optional[int],
|
|
disable_sliding_window: bool,
|
|
sliding_window_len: Optional[Union[int, List[Optional[int]]]],
|
|
spec_target_max_model_len: Optional[int] = None,
|
|
encoder_config: Optional[Any] = None,
|
|
) -> int:
|
|
"""Get and verify the model's maximum length."""
|
|
derived_max_model_len = float("inf")
|
|
possible_keys = [
|
|
# OPT
|
|
"max_position_embeddings",
|
|
# GPT-2
|
|
"n_positions",
|
|
# MPT
|
|
"max_seq_len",
|
|
# ChatGLM2
|
|
"seq_length",
|
|
# Command-R
|
|
"model_max_length",
|
|
# Whisper
|
|
"max_target_positions",
|
|
# Others
|
|
"max_sequence_length",
|
|
"max_seq_length",
|
|
"seq_len",
|
|
]
|
|
# Choose the smallest "max_length" from the possible keys.
|
|
max_len_key = None
|
|
for key in possible_keys:
|
|
max_len = getattr(hf_config, key, None)
|
|
if max_len is not None:
|
|
max_len_key = key if max_len < derived_max_model_len \
|
|
else max_len_key
|
|
derived_max_model_len = min(derived_max_model_len, max_len)
|
|
|
|
# If sliding window is manually disabled, max_length should be less
|
|
# than the sliding window length in the model config.
|
|
if disable_sliding_window and sliding_window_len is not None:
|
|
|
|
sliding_window_len_min = get_min_sliding_window(sliding_window_len)
|
|
max_len_key = "sliding_window" \
|
|
if sliding_window_len_min < derived_max_model_len else max_len_key
|
|
derived_max_model_len = min(derived_max_model_len,
|
|
sliding_window_len_min)
|
|
|
|
# If none of the keys were found in the config, use a default and
|
|
# log a warning.
|
|
if derived_max_model_len == float("inf"):
|
|
if max_model_len is not None:
|
|
# If max_model_len is specified, we use it.
|
|
return max_model_len
|
|
|
|
if spec_target_max_model_len is not None:
|
|
# If this is a speculative draft model, we use the max model len
|
|
# from the target model.
|
|
return spec_target_max_model_len
|
|
|
|
default_max_len = 2048
|
|
logger.warning(
|
|
"The model's config.json does not contain any of the following "
|
|
"keys to determine the original maximum length of the model: "
|
|
"%s. Assuming the model's maximum length is %d.", possible_keys,
|
|
default_max_len)
|
|
derived_max_model_len = default_max_len
|
|
|
|
rope_scaling = getattr(hf_config, "rope_scaling", None)
|
|
if rope_scaling is not None:
|
|
# No need to consider "type" key because of patch_rope_scaling when
|
|
# loading HF config
|
|
rope_type = rope_scaling["rope_type"]
|
|
|
|
if rope_type not in ("su", "longrope", "llama3"):
|
|
if disable_sliding_window:
|
|
# TODO(robertgshaw): Find a model that supports rope_scaling
|
|
# with sliding window to see if this case should be allowed.
|
|
raise NotImplementedError(
|
|
"Disabling sliding window is not supported for models "
|
|
"with rope_scaling. Please raise an issue so we can "
|
|
"investigate.")
|
|
|
|
# NOTE: rope_type == "default" does not define factor
|
|
# https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/modeling_rope_utils.py
|
|
scaling_factor = rope_scaling.get("factor", 1.0)
|
|
|
|
if rope_type == "yarn":
|
|
derived_max_model_len = rope_scaling[
|
|
"original_max_position_embeddings"]
|
|
derived_max_model_len *= scaling_factor
|
|
|
|
if encoder_config and "max_seq_length" in encoder_config:
|
|
derived_max_model_len = encoder_config["max_seq_length"]
|
|
|
|
# If the user specified a max length, make sure it is smaller than the
|
|
# derived length from the HF model config.
|
|
if max_model_len is None:
|
|
max_model_len = int(derived_max_model_len)
|
|
elif max_model_len > derived_max_model_len:
|
|
# Some models might have a separate key for specifying model_max_length
|
|
# that will be bigger than derived_max_model_len. We compare user input
|
|
# with model_max_length and allow this override when it's smaller.
|
|
model_max_length = getattr(hf_config, "model_max_length", None)
|
|
if model_max_length is not None and max_model_len <= model_max_length:
|
|
if disable_sliding_window:
|
|
# TODO(robertgshaw): Find a model that has model_max_length
|
|
# with sliding window to see if this case should be allowed.
|
|
raise NotImplementedError(
|
|
"Disabling sliding window is not supported for models "
|
|
"model_max_length in the config. Please raise an issue "
|
|
"so we can investigate.")
|
|
else:
|
|
msg = (
|
|
f"User-specified max_model_len ({max_model_len}) is greater "
|
|
f"than the derived max_model_len ({max_len_key}="
|
|
f"{derived_max_model_len} or model_max_length="
|
|
f"{model_max_length} in model's config.json). This may lead "
|
|
"to incorrect model outputs or CUDA errors.")
|
|
if envs.VLLM_ALLOW_LONG_MAX_MODEL_LEN:
|
|
logger.warning(
|
|
"%s Make sure the value is correct and within the "
|
|
"model context size.", msg)
|
|
else:
|
|
raise ValueError(
|
|
f"{msg} To allow overriding this maximum, set "
|
|
"the env var VLLM_ALLOW_LONG_MAX_MODEL_LEN=1")
|
|
return int(max_model_len)
|
|
|
|
|
|
def get_min_sliding_window(
|
|
sliding_window: Union[int, List[Optional[int]]]) -> int:
|
|
if isinstance(sliding_window, list):
|
|
return min(s for s in sliding_window if s is not None)
|
|
|
|
return sliding_window
|
|
|
|
|
|
def get_served_model_name(model: str,
|
|
served_model_name: Optional[Union[str, List[str]]]):
|
|
"""
|
|
If the input is a non-empty list, the first model_name in
|
|
`served_model_name` is taken.
|
|
If the input is a non-empty string, it is used directly.
|
|
For cases where the input is either an empty string or an
|
|
empty list, the fallback is to use `self.model`.
|
|
"""
|
|
if not served_model_name:
|
|
return model
|
|
if isinstance(served_model_name, list):
|
|
return served_model_name[0]
|
|
return served_model_name
|
|
|
|
|
|
@dataclass
|
|
class DecodingConfig:
|
|
"""Dataclass which contains the decoding strategy of the engine"""
|
|
|
|
# Which guided decoding algo to use.
|
|
# 'outlines' / 'lm-format-enforcer' / 'xgrammar'
|
|
guided_decoding_backend: str = 'xgrammar'
|
|
|
|
def compute_hash(self) -> str:
|
|
"""
|
|
WARNING: Whenever a new field is added to this config,
|
|
ensure that it is included in the factors list if
|
|
it affects the computation graph.
|
|
|
|
Provide a hash that uniquely identifies all the configs
|
|
that affect the structure of the computation
|
|
graph from input ids/embeddings to the final hidden states,
|
|
excluding anything before input ids/embeddings and after
|
|
the final hidden states.
|
|
"""
|
|
# no factors to consider.
|
|
# this config will not affect the computation graph.
|
|
factors: List[Any] = []
|
|
hash_str = hashlib.md5(str(factors).encode()).hexdigest()
|
|
return hash_str
|
|
|
|
def __post_init__(self):
|
|
valid_guided_backends = ['outlines', 'lm-format-enforcer', 'xgrammar']
|
|
backend = self.guided_decoding_backend
|
|
if backend not in valid_guided_backends:
|
|
raise ValueError(f"Invalid guided_decoding_backend '{backend},"
|
|
f"must be one of {valid_guided_backends}")
|
|
|
|
|
|
@dataclass
|
|
class ObservabilityConfig:
|
|
"""Configuration for observability."""
|
|
otlp_traces_endpoint: Optional[str] = None
|
|
|
|
# Collecting detailed timing information for each request can be expensive.
|
|
|
|
# If set, collects the model forward time for the request.
|
|
collect_model_forward_time: bool = False
|
|
|
|
# If set, collects the model execute time for the request.
|
|
collect_model_execute_time: bool = False
|
|
|
|
def compute_hash(self) -> str:
|
|
"""
|
|
WARNING: Whenever a new field is added to this config,
|
|
ensure that it is included in the factors list if
|
|
it affects the computation graph.
|
|
|
|
Provide a hash that uniquely identifies all the configs
|
|
that affect the structure of the computation
|
|
graph from input ids/embeddings to the final hidden states,
|
|
excluding anything before input ids/embeddings and after
|
|
the final hidden states.
|
|
"""
|
|
# no factors to consider.
|
|
# this config will not affect the computation graph.
|
|
factors: List[Any] = []
|
|
hash_str = hashlib.md5(str(factors).encode()).hexdigest()
|
|
return hash_str
|
|
|
|
def __post_init__(self):
|
|
if not is_otel_available() and self.otlp_traces_endpoint is not None:
|
|
raise ValueError(
|
|
"OpenTelemetry is not available. Unable to configure "
|
|
"'otlp_traces_endpoint'. Ensure OpenTelemetry packages are "
|
|
f"installed. Original error:\n{otel_import_error_traceback}")
|
|
|
|
|
|
class KVTransferConfig(BaseModel):
|
|
"""Configuration for distributed KV cache transfer."""
|
|
|
|
# The KV connector for vLLM to transmit KV caches between vLLM instances.
|
|
kv_connector: Optional[str] = None
|
|
|
|
# The device used by kv connector to buffer the KV cache.
|
|
# Currently only support 'cuda'.
|
|
kv_buffer_device: Optional[str] = "cuda"
|
|
|
|
# The buffer size for TorchDistributedConnector. Measured in number of
|
|
# bytes. Recommended value: 1e9 (about 1GB).
|
|
kv_buffer_size: float = 1e9
|
|
|
|
# Whether this vLLM instance produces, consumes KV cache, or both. Choices
|
|
# are 'kv_producer', 'kv_consumer', and 'both'.
|
|
kv_role: Optional[str] = None
|
|
|
|
# The rank of this vLLM instance in the KV cache transfer. Typical value:
|
|
# 0 for prefill instance, 1 for decode instance.
|
|
# Currently only 1P1D is supported.
|
|
kv_rank: Optional[int] = None
|
|
|
|
# The number of parallel instances for KV cache transfer. For
|
|
# PyNcclConnector, this should be 2.
|
|
kv_parallel_size: int = 1
|
|
|
|
# The KV connector ip, used to build distributed connection
|
|
kv_ip: str = "127.0.0.1"
|
|
|
|
# The KV connector port, used to build distributed connection
|
|
kv_port: int = 14579
|
|
|
|
def compute_hash(self) -> str:
|
|
"""
|
|
WARNING: Whenever a new field is added to this config,
|
|
ensure that it is included in the factors list if
|
|
it affects the computation graph.
|
|
|
|
Provide a hash that uniquely identifies all the configs
|
|
that affect the structure of the computation
|
|
graph from input ids/embeddings to the final hidden states,
|
|
excluding anything before input ids/embeddings and after
|
|
the final hidden states.
|
|
"""
|
|
# no factors to consider.
|
|
# this config will not affect the computation graph.
|
|
factors: List[Any] = []
|
|
hash_str = hashlib.md5(str(factors).encode()).hexdigest()
|
|
return hash_str
|
|
|
|
@classmethod
|
|
def from_cli(cls, cli_value: str) -> "KVTransferConfig":
|
|
"""Parse the CLI value for the kv cache transfer config."""
|
|
return KVTransferConfig.model_validate_json(cli_value)
|
|
|
|
def model_post_init(self, __context: Any) -> None:
|
|
|
|
if self.kv_role is not None and self.kv_role not in [
|
|
"kv_producer", "kv_consumer", "kv_both"
|
|
]:
|
|
raise ValueError(
|
|
f"Unsupported kv_role: {self.kv_role}. "
|
|
f"Supported roles are `kv_producer`, `kv_consumer`, "
|
|
f"and `kv_both`")
|
|
|
|
if self.kv_connector is not None and self.kv_role is None:
|
|
raise ValueError("Please specify kv_disagg_role when kv_connector "
|
|
"is set, supported roles are `kv_producer`, "
|
|
"`kv_consumer`, and `kv_both`")
|
|
|
|
@property
|
|
def is_kv_transfer_instance(self) -> bool:
|
|
return self.kv_connector is not None and \
|
|
self.kv_role in ["kv_producer", "kv_consumer", "kv_both"]
|
|
|
|
@property
|
|
def need_kv_parallel_group(self) -> bool:
|
|
# for those database-based connector, vLLM does not need to create
|
|
# parallel group, and in that case the kv parallel size will be 1.
|
|
return self.kv_connector is not None and self.kv_parallel_size > 1
|
|
|
|
@property
|
|
def is_kv_producer(self) -> bool:
|
|
return self.kv_connector is not None and \
|
|
self.kv_role in ["kv_producer", "kv_both"]
|
|
|
|
@property
|
|
def is_kv_consumer(self) -> bool:
|
|
return self.kv_connector is not None and \
|
|
self.kv_role in ["kv_consumer", "kv_both"]
|
|
|
|
|
|
class CompilationLevel:
|
|
# constants for the levels of the compilation process
|
|
NO_COMPILATION = 0
|
|
DYNAMO_AS_IS = 1
|
|
DYNAMO_ONCE = 2
|
|
PIECEWISE = 3
|
|
|
|
|
|
class CompilationConfig(BaseModel):
|
|
"""
|
|
Configuration for compilation.
|
|
It has three parts:
|
|
- Top-level Compilation control:
|
|
- level: the level of compilation.
|
|
- 0: no compilation.
|
|
- 1: dynamo as is.
|
|
- 2: dynamo once.
|
|
- 3: piecewise compilation.
|
|
- debug_dump_path: the path to dump the debug information.
|
|
- cache_dir: the directory to store the compiled graph, to
|
|
accelerate Inductor compilation. By default, it will use
|
|
model-related information to generate a cache directory.
|
|
- backend: the backend for compilation. It needs to be a string.
|
|
- "" (empty string): use the default backend.
|
|
- "eager"/"openxla"/...: use the specified backend registered in PyTorch.
|
|
- "full.module.name": a qualified name which can be used to import the backend function.
|
|
We use string to avoid serialization issues when using compilation in a distributed setting.
|
|
When the compilation level is 1 or 2, the backend is used for the compilation directly (it sees the whole graph).
|
|
When the compilation level is 3, the backend is used for the piecewise compilation (it sees a part of the graph).
|
|
- custom_ops: fine-grained control over which custom ops to enable/disable.
|
|
Use 'all' to enable all, 'none' to disable all.
|
|
Also specify a list of custom op names to enable (prefixed with a '+'),
|
|
or disable (prefixed with a '-').
|
|
Examples:
|
|
- 'all,-op1' to enable all except op1
|
|
- 'none,+op1,+op2' to enable only op1 and op2
|
|
By default, all custom ops are enabled when running without Inductor
|
|
and disabled when running with Inductor (compile_level >= Inductor).
|
|
- splitting_ops: a list of ops to split the full graph into subgraphs, used in piecewise compilation.
|
|
- CudaGraph capture:
|
|
- use_cudagraph: whether to use cudagraph inside compilation.
|
|
- False: cudagraph inside compilation is not used.
|
|
- True: cudagraph inside compilation is used. It requires
|
|
that all input buffers have fixed addresses, and all
|
|
splitting ops write their outputs to input buffers.
|
|
Note that this is orthogonal to the cudagraph capture logic
|
|
outside of compilation.
|
|
TODO: move outside cudagraph logic into compilation.
|
|
torch.compile will handle cudagraph capture logic in the future.
|
|
- cudagraph_capture_sizes: sizes to capture cudagraph.
|
|
- None (default): capture sizes are inferred from vllm config.
|
|
- List[int]: capture sizes are specified as given.
|
|
- cudagraph_num_of_warmups: number of warmup runs for cudagraph.
|
|
It means the first several runs will be treated as warmup runs.
|
|
Only after that, the execution will be recorded, and the recorded
|
|
cudagraph will be used for subsequent runs.
|
|
- cudagraph_copy_inputs: whether to copy input tensors for
|
|
cudagraph. If the caller can guarantee that the same input buffers
|
|
are always used, it can set this to False. Otherwise, it should
|
|
set this to True, and the compiler will copy the input to an
|
|
internally managed buffer. Default is False.
|
|
- Inductor compilation:
|
|
- use_inductor: whether to use inductor compilation.
|
|
- False: inductor compilation is not used. graph runs in eager.
|
|
- True: inductor compilation is used. one graph for symbolic shape
|
|
is compiled. In addition, compile for cudagraph sizes that are
|
|
in candidate_compile_sizes, using configurations
|
|
in inductor_compile_config.
|
|
- candidate_compile_sizes: sizes to compile for inductor.
|
|
- inductor_compile_config: additional configurations for inductor.
|
|
- None: use default configurations.
|
|
- inductor_passes: additional passes for inductor. It is a dictionary
|
|
from pass name to pass function qualified name. We use function
|
|
name because the config uses json format. If we pass the config
|
|
from Python, functions can also be passed directly via Python object
|
|
constructor, e.g. `CompilationConfig(inductor_passes={"a": func})`
|
|
- custom inductor passes: see PassConfig for more details
|
|
|
|
Why we have different sizes for cudagraph and inductor:
|
|
- cudagraph: a cudagraph captured for a specific size can only be used
|
|
for the same size. We need to capture all the sizes we want to use.
|
|
- inductor: a graph compiled by inductor for a general shape can be used
|
|
for different sizes. Inductor can also compile for specific sizes,
|
|
where it can have more information to optimize the graph with fully
|
|
static shapes. However, we find the general shape compilation is
|
|
sufficient for most cases. It might be beneficial to compile for
|
|
certain small batchsizes, where inductor is good at optimizing.
|
|
""" # noqa
|
|
level: int = 0
|
|
debug_dump_path: str = ""
|
|
cache_dir: str = ""
|
|
backend: str = ""
|
|
custom_ops: List[str] = Field(default_factory=list)
|
|
splitting_ops: List[str] = Field(default=None) # type: ignore
|
|
|
|
use_inductor: bool = True
|
|
candidate_compile_sizes: Optional[List[int]] = Field(default=None)
|
|
inductor_compile_config: Dict = Field(default_factory=dict)
|
|
inductor_passes: Dict[str, str] = Field(default_factory=dict)
|
|
|
|
use_cudagraph: bool = False
|
|
cudagraph_num_of_warmups: int = 0
|
|
cudagraph_capture_sizes: Optional[List[int]] = None
|
|
cudagraph_copy_inputs: bool = False
|
|
|
|
class PassConfig(BaseModel):
|
|
"""
|
|
Configuration for custom Inductor passes.
|
|
This is separate from general CompilationConfig so that inductor passes
|
|
don't all have access to full configuration - that would create a cycle
|
|
as the PassManager is set as a property of config.
|
|
- dump_graph_stages: list of stages for which we want to dump the graph.
|
|
Each pass defines its own stages (before, after, maybe in-between).
|
|
- dump_graph_dir: directory to dump the graphs. Default is .
|
|
- enable_fusion: whether to enable the custom fusion pass.
|
|
- enable_reshape: whether to enable the custom reshape elimination pass.
|
|
TODO better pass enabling system.
|
|
"""
|
|
dump_graph_stages: List[str] = Field(default_factory=list)
|
|
dump_graph_dir: Path = Field(default=Path("."))
|
|
enable_fusion: bool = True
|
|
enable_reshape: bool = True
|
|
|
|
def uuid(self):
|
|
"""
|
|
Produces a hash unique to the pass configuration.
|
|
Any new fields that affect compilation should be added to the hash.
|
|
Do not include dump_graph_* in the hash - they don't affect
|
|
compilation.
|
|
"""
|
|
dict_ = self.model_dump(
|
|
include={"enable_fusion", "enable_reshape"})
|
|
encoded = json.dumps(dict_, sort_keys=True).encode("utf-8")
|
|
return hashlib.sha256(encoded).digest()
|
|
|
|
def model_post_init(self, __context: Any) -> None:
|
|
if not self.enable_reshape and self.enable_fusion:
|
|
logger.warning_once(
|
|
"Fusion enabled but reshape elimination disabled."
|
|
"RMSNorm + quant (fp8) fusion might not work")
|
|
|
|
pass_config: PassConfig = Field(default_factory=PassConfig)
|
|
|
|
# not configurable, computed after init
|
|
compile_sizes: List[int] = PrivateAttr
|
|
capture_sizes: List[int] = PrivateAttr
|
|
max_capture_size: int = PrivateAttr
|
|
# optimization:
|
|
# Intuitively, bs_to_padded_graph_size should be Dict[int, int].
|
|
# since we know all keys are in a range [0, max_capture_size],
|
|
# we can optimize it to List[int] for better lookup performance.
|
|
bs_to_padded_graph_size: List[int] = PrivateAttr
|
|
|
|
# keep track of enabled and disabled custom ops
|
|
enabled_custom_ops: Counter[str] = PrivateAttr
|
|
disabled_custom_ops: Counter[str] = PrivateAttr
|
|
traced_files: Set[str] = PrivateAttr
|
|
compilation_time: float = PrivateAttr
|
|
|
|
# Per-model forward context
|
|
# Map from layer name to the attention cls
|
|
static_forward_context: Dict[str, Any] = PrivateAttr
|
|
|
|
def compute_hash(self) -> str:
|
|
"""
|
|
WARNING: Whenever a new field is added to this config,
|
|
ensure that it is included in the factors list if
|
|
it affects the computation graph.
|
|
|
|
Provide a hash that uniquely identifies all the configs
|
|
that affect the structure of the computation
|
|
graph from input ids/embeddings to the final hidden states,
|
|
excluding anything before input ids/embeddings and after
|
|
the final hidden states.
|
|
"""
|
|
factors: List[Any] = []
|
|
factors.append(self.level)
|
|
factors.append(self.backend)
|
|
factors.append(self.custom_ops)
|
|
factors.append(self.splitting_ops)
|
|
factors.append(self.use_inductor)
|
|
factors.append(self.inductor_compile_config)
|
|
factors.append(self.inductor_passes)
|
|
factors.append(self.pass_config.uuid())
|
|
return hashlib.sha256(str(factors).encode()).hexdigest()
|
|
|
|
def __repr__(self) -> str:
|
|
exclude = {
|
|
"static_forward_context",
|
|
"enabled_custom_ops",
|
|
"disabled_custom_ops",
|
|
"compilation_time",
|
|
"bs_to_padded_graph_size",
|
|
"pass_config",
|
|
"traced_files",
|
|
}
|
|
return self.model_dump_json(exclude=exclude, exclude_unset=True)
|
|
|
|
__str__ = __repr__
|
|
|
|
@classmethod
|
|
def from_cli(cls, cli_value: str) -> "CompilationConfig":
|
|
"""Parse the CLI value for the compilation config."""
|
|
if cli_value in ["0", "1", "2", "3"]:
|
|
return cls(level=int(cli_value))
|
|
# do not use `eval`, it is dangerous and can execute arbitrary code
|
|
dict_value = ast.literal_eval(cli_value)
|
|
return CompilationConfig.model_validate(dict_value)
|
|
|
|
def model_post_init(self, __context: Any) -> None:
|
|
|
|
count_none = self.custom_ops.count("none")
|
|
count_all = self.custom_ops.count("all")
|
|
assert count_none + count_all <= 1, "Can only specify 'none' or 'all'"
|
|
|
|
if self.splitting_ops is None:
|
|
if envs.VLLM_USE_V1:
|
|
# v1 must split the graph on attention ops
|
|
# for piecewise cudagraph
|
|
self.splitting_ops = [
|
|
"vllm.unified_attention",
|
|
"vllm.unified_attention_with_output",
|
|
]
|
|
else:
|
|
# v0 can use full graph compilation without splitting,
|
|
# splitting is optional.
|
|
# right now we still need it. kv cache shape
|
|
# will be included in the graph if we don't split
|
|
# the graph.
|
|
# TODO: hide kv cache in static forward context
|
|
# so that inductor does not see it.
|
|
self.splitting_ops = [
|
|
"vllm.unified_attention",
|
|
"vllm.unified_attention_with_output",
|
|
]
|
|
|
|
for k, v in self.inductor_passes.items():
|
|
if not isinstance(v, str):
|
|
assert callable(v), (
|
|
f"pass {k} should be callable or a qualified name")
|
|
self.inductor_compile_config[k] = v if isinstance(
|
|
v, InductorPass) else CallableInductorPass(v)
|
|
continue
|
|
|
|
# resolve function from qualified name
|
|
names = v.split(".")
|
|
module = ".".join(names[:-1])
|
|
func_name = names[-1]
|
|
func = __import__(module).__dict__[func_name]
|
|
self.inductor_compile_config[k] = func if isinstance(
|
|
func, InductorPass) else CallableInductorPass(func)
|
|
|
|
self.enabled_custom_ops = Counter()
|
|
self.disabled_custom_ops = Counter()
|
|
self.traced_files = set()
|
|
self.static_forward_context = {}
|
|
self.compilation_time = 0.0
|
|
|
|
def init_backend(self, vllm_config: "VllmConfig") -> Union[str, Callable]:
|
|
if self.level == CompilationLevel.NO_COMPILATION:
|
|
raise ValueError("No compilation level is set.")
|
|
|
|
from torch._dynamo.backends.registry import list_backends
|
|
torch_backends = list_backends(exclude_tags=tuple())
|
|
if self.level in [
|
|
CompilationLevel.DYNAMO_AS_IS, CompilationLevel.DYNAMO_ONCE
|
|
]:
|
|
if self.backend == "":
|
|
return "eager"
|
|
if self.backend in torch_backends:
|
|
return self.backend
|
|
return resolve_obj_by_qualname(self.backend)
|
|
|
|
# TODO: pass user-specified backend to piecewise compilation
|
|
# merge with the config use_inductor
|
|
assert self.level == CompilationLevel.PIECEWISE
|
|
|
|
from vllm.compilation.backends import VllmBackend
|
|
return VllmBackend(vllm_config)
|
|
|
|
def init_with_cudagraph_sizes(self, sizes_to_specialize: List[int]):
|
|
"""To complete the initialization of config,
|
|
we need to know the cudagraph sizes."""
|
|
|
|
if self.cudagraph_capture_sizes is None:
|
|
self.capture_sizes = sizes_to_specialize
|
|
else:
|
|
self.capture_sizes = self.cudagraph_capture_sizes
|
|
logger.info(("cudagraph sizes specified by model runner"
|
|
" %s is overridden by config %s"),
|
|
sizes_to_specialize, self.cudagraph_capture_sizes)
|
|
|
|
if self.candidate_compile_sizes is None:
|
|
self.candidate_compile_sizes = []
|
|
self.compile_sizes = [
|
|
x for x in self.candidate_compile_sizes if x in self.capture_sizes
|
|
]
|
|
ignored_sizes = [
|
|
x for x in self.candidate_compile_sizes
|
|
if x not in self.capture_sizes
|
|
]
|
|
if ignored_sizes:
|
|
logger.warning(("candidate_compile_sizes %s are ignored "
|
|
"because they are not cudagraph capture sizes."),
|
|
ignored_sizes)
|
|
|
|
# sort to make sure cudagraph capture sizes are in descending order
|
|
self.capture_sizes.sort(reverse=True)
|
|
self.max_capture_size = self.capture_sizes[
|
|
0] if self.capture_sizes else 0
|
|
|
|
# pre-compute the mapping from batch size to padded graph size
|
|
self.bs_to_padded_graph_size = [
|
|
0 for i in range(self.max_capture_size + 1)
|
|
]
|
|
for end, start in zip(self.capture_sizes,
|
|
self.capture_sizes[1:] + [0]):
|
|
for bs in range(start, end):
|
|
if bs == start:
|
|
self.bs_to_padded_graph_size[bs] = start
|
|
else:
|
|
self.bs_to_padded_graph_size[bs] = end
|
|
self.bs_to_padded_graph_size[
|
|
self.max_capture_size] = self.max_capture_size
|
|
|
|
|
|
@dataclass
|
|
class VllmConfig:
|
|
"""Dataclass which contains all vllm-related configuration. This
|
|
simplifies passing around the distinct configurations in the codebase.
|
|
"""
|
|
|
|
model_config: ModelConfig = field(default=None, init=True) # type: ignore
|
|
cache_config: CacheConfig = field(default=None, init=True) # type: ignore
|
|
parallel_config: ParallelConfig = field(default_factory=ParallelConfig,
|
|
init=True)
|
|
scheduler_config: SchedulerConfig = field(default_factory=SchedulerConfig,
|
|
init=True)
|
|
device_config: DeviceConfig = field(default=None,
|
|
init=True) # type: ignore
|
|
load_config: LoadConfig = field(default=None, init=True) # type: ignore
|
|
lora_config: Optional[LoRAConfig] = None
|
|
speculative_config: Optional[SpeculativeConfig] = None
|
|
decoding_config: Optional[DecodingConfig] = None
|
|
observability_config: Optional[ObservabilityConfig] = None
|
|
prompt_adapter_config: Optional[PromptAdapterConfig] = None
|
|
quant_config: Optional[QuantizationConfig] = None
|
|
compilation_config: CompilationConfig = field(default=None,
|
|
init=True) # type: ignore
|
|
kv_transfer_config: KVTransferConfig = field(default=None,
|
|
init=True) # type: ignore
|
|
# some opaque config, only used to provide additional information
|
|
# for the hash computation, mainly used for testing and debugging.
|
|
additional_config: SupportsHash = field(default=None,
|
|
init=True) # type: ignore
|
|
instance_id: str = ""
|
|
|
|
def compute_hash(self) -> str:
|
|
"""
|
|
WARNING: Whenever a new field is added to this config,
|
|
ensure that it is included in the factors list if
|
|
it affects the computation graph.
|
|
|
|
Provide a hash that uniquely identifies all the configs
|
|
that affect the structure of the computation
|
|
graph from input ids/embeddings to the final hidden states,
|
|
excluding anything before input ids/embeddings and after
|
|
the final hidden states.
|
|
"""
|
|
factors: List[Any] = []
|
|
# summarize system state
|
|
from torch._inductor.codecache import CacheBase
|
|
system_factors = CacheBase.get_system()
|
|
factors.append(system_factors)
|
|
|
|
# summarize pytorch state
|
|
from torch._inductor.codecache import torch_key
|
|
torch_factors = torch_key()
|
|
factors.append(torch_factors)
|
|
|
|
# summarize vllm config
|
|
vllm_factors: List[Any] = []
|
|
from vllm import __version__
|
|
vllm_factors.append(__version__)
|
|
if self.model_config:
|
|
vllm_factors.append(self.model_config.compute_hash())
|
|
else:
|
|
vllm_factors.append("None")
|
|
if self.cache_config:
|
|
vllm_factors.append(self.cache_config.compute_hash())
|
|
else:
|
|
vllm_factors.append("None")
|
|
if self.parallel_config:
|
|
vllm_factors.append(self.parallel_config.compute_hash())
|
|
else:
|
|
vllm_factors.append("None")
|
|
if self.scheduler_config:
|
|
vllm_factors.append(self.scheduler_config.compute_hash())
|
|
else:
|
|
vllm_factors.append("None")
|
|
if self.device_config:
|
|
vllm_factors.append(self.device_config.compute_hash())
|
|
else:
|
|
vllm_factors.append("None")
|
|
if self.load_config:
|
|
vllm_factors.append(self.load_config.compute_hash())
|
|
else:
|
|
vllm_factors.append("None")
|
|
if self.lora_config:
|
|
vllm_factors.append(self.lora_config.compute_hash())
|
|
else:
|
|
vllm_factors.append("None")
|
|
if self.speculative_config:
|
|
vllm_factors.append(self.speculative_config.compute_hash())
|
|
else:
|
|
vllm_factors.append("None")
|
|
if self.decoding_config:
|
|
vllm_factors.append(self.decoding_config.compute_hash())
|
|
else:
|
|
vllm_factors.append("None")
|
|
if self.observability_config:
|
|
vllm_factors.append(self.observability_config.compute_hash())
|
|
else:
|
|
vllm_factors.append("None")
|
|
if self.prompt_adapter_config:
|
|
vllm_factors.append(self.prompt_adapter_config.compute_hash())
|
|
else:
|
|
vllm_factors.append("None")
|
|
if self.quant_config:
|
|
pass # should be captured by model_config.quantization
|
|
if self.compilation_config:
|
|
vllm_factors.append(self.compilation_config.compute_hash())
|
|
else:
|
|
vllm_factors.append("None")
|
|
if self.kv_transfer_config:
|
|
vllm_factors.append(self.kv_transfer_config.compute_hash())
|
|
else:
|
|
vllm_factors.append("None")
|
|
if self.additional_config:
|
|
vllm_factors.append(self.additional_config.compute_hash())
|
|
else:
|
|
vllm_factors.append("None")
|
|
factors.append(vllm_factors)
|
|
|
|
hash_str = hashlib.md5(str(factors).encode()).hexdigest()[:10]
|
|
return hash_str
|
|
|
|
def pad_for_cudagraph(self, batch_size: int) -> int:
|
|
# if batch_size > self.compilation_config.max_capture_size,
|
|
# it should raise an IndexError.
|
|
# the caller should make sure the batch_size is within the range,
|
|
# i.e., batch_size <= self.compilation_config.max_capture_size
|
|
return self.compilation_config.bs_to_padded_graph_size[batch_size]
|
|
|
|
@staticmethod
|
|
def _get_quantization_config(
|
|
model_config: ModelConfig,
|
|
load_config: LoadConfig) -> Optional[QuantizationConfig]:
|
|
"""Get the quantization config."""
|
|
from vllm.platforms import current_platform
|
|
if model_config.quantization is not None:
|
|
from vllm.model_executor.model_loader.weight_utils import (
|
|
get_quant_config)
|
|
quant_config = get_quant_config(model_config, load_config)
|
|
capability_tuple = current_platform.get_device_capability()
|
|
|
|
if capability_tuple is not None:
|
|
capability = capability_tuple.to_int()
|
|
if capability < quant_config.get_min_capability():
|
|
raise ValueError(
|
|
f"The quantization method {model_config.quantization} "
|
|
"is not supported for the current GPU. Minimum "
|
|
f"capability: {quant_config.get_min_capability()}. "
|
|
f"Current capability: {capability}.")
|
|
supported_dtypes = quant_config.get_supported_act_dtypes()
|
|
if model_config.dtype not in supported_dtypes:
|
|
raise ValueError(
|
|
f"{model_config.dtype} is not supported for quantization "
|
|
f"method {model_config.quantization}. Supported dtypes: "
|
|
f"{supported_dtypes}")
|
|
return quant_config
|
|
return None
|
|
|
|
def with_hf_config(
|
|
self,
|
|
hf_config: PretrainedConfig,
|
|
architectures: Optional[list[str]] = None,
|
|
) -> "VllmConfig":
|
|
if architectures is not None:
|
|
hf_config = copy.deepcopy(hf_config)
|
|
hf_config.architectures = architectures
|
|
|
|
model_config = copy.deepcopy(self.model_config)
|
|
model_config.hf_config = hf_config
|
|
|
|
return replace(self, model_config=model_config)
|
|
|
|
def __post_init__(self):
|
|
"""Verify configs are valid & consistent with each other.
|
|
"""
|
|
if self.model_config is not None:
|
|
self.model_config.verify_async_output_proc(self.parallel_config,
|
|
self.speculative_config,
|
|
self.device_config)
|
|
self.model_config.verify_with_parallel_config(self.parallel_config)
|
|
|
|
if self.cache_config is not None:
|
|
self.cache_config.verify_with_parallel_config(self.parallel_config)
|
|
|
|
if self.lora_config:
|
|
self.lora_config.verify_with_cache_config(self.cache_config)
|
|
self.lora_config.verify_with_model_config(self.model_config)
|
|
self.lora_config.verify_with_scheduler_config(
|
|
self.scheduler_config)
|
|
if self.prompt_adapter_config:
|
|
self.prompt_adapter_config.verify_with_model_config(
|
|
self.model_config)
|
|
|
|
if self.quant_config is None and \
|
|
self.model_config is not None and self.load_config is not None:
|
|
self.quant_config = VllmConfig._get_quantization_config(
|
|
self.model_config, self.load_config)
|
|
|
|
from vllm.platforms import current_platform
|
|
if self.scheduler_config is not None and \
|
|
self.model_config is not None and \
|
|
self.scheduler_config.chunked_prefill_enabled and \
|
|
self.model_config.dtype == torch.float32 and \
|
|
current_platform.get_device_capability() == (7, 5):
|
|
logger.warning_once(
|
|
"Turing devices tensor cores do not support float32 matmul. "
|
|
"To workaround this limitation, vLLM will set 'ieee' input "
|
|
"precision for chunked prefill triton kernels.")
|
|
|
|
if self.compilation_config is None:
|
|
self.compilation_config = CompilationConfig()
|
|
if envs.VLLM_USE_V1 and not self.model_config.enforce_eager:
|
|
# NOTE(woosuk): Currently, we use inductor because the piecewise
|
|
# CUDA graphs do not work properly with the custom CUDA kernels.
|
|
# FIXME(woosuk): Disable inductor to reduce the compilation time
|
|
# and avoid any potential issues with the inductor.
|
|
self.compilation_config.custom_ops = ["none"]
|
|
self.compilation_config.use_cudagraph = True
|
|
self.compilation_config.use_inductor = True
|
|
self.compilation_config.cudagraph_num_of_warmups = 1
|
|
self.compilation_config.pass_config.enable_fusion = False
|
|
self.compilation_config.pass_config.enable_reshape = False
|
|
self.compilation_config.level = CompilationLevel.PIECEWISE
|
|
|
|
self._set_cudagraph_sizes()
|
|
|
|
if self.cache_config is not None and \
|
|
self.cache_config.cpu_offload_gb > 0 and \
|
|
self.compilation_config.level != CompilationLevel.NO_COMPILATION:
|
|
logger.warning(
|
|
"CPU offload is not supported with `torch.compile` yet."
|
|
" Disabling `torch.compile`.")
|
|
self.compilation_config.level = CompilationLevel.NO_COMPILATION
|
|
|
|
if self.lora_config is not None and self.compilation_config.level !=\
|
|
CompilationLevel.NO_COMPILATION:
|
|
logger.warning("LoRA is not supported with `torch.compile` yet. "
|
|
"Disabling `torch.compile`.")
|
|
self.compilation_config.level = CompilationLevel.NO_COMPILATION
|
|
|
|
current_platform.check_and_update_config(self)
|
|
|
|
if not self.instance_id:
|
|
self.instance_id = random_uuid()[:5]
|
|
|
|
def _set_cudagraph_sizes(self):
|
|
"""
|
|
cudagraph batchsize padding logic:
|
|
|
|
`[1, 2, 4] + [8 * i for i in range(1, 1025)]` is a list of all possible
|
|
batch sizes that cudagraph will capture.
|
|
|
|
Depending on the engine's configuration of `max_num_seqs`, the
|
|
candidate batch sizes to capture cudagraph will shrink to the subset
|
|
which just cover the range of `[1, max_num_seqs]`. In the common case,
|
|
`max_num_seqs` is 256, and the cudagraph batch sizes will be
|
|
`[1, 2, 4, 8, 16, 24, 32, 40, ..., 256]`.
|
|
|
|
However, if users specify the cudagraph capture sizes through
|
|
compilation config, we will use the specified sizes instead.
|
|
|
|
In the end, `vllm_config.compilation_config.capture_sizes` will be the
|
|
final sizes to capture cudagraph (in descending order).
|
|
|
|
During runtime, if batchsize is larger than
|
|
`vllm_config.compilation_config.capture_sizes`,
|
|
no cudagraph will be used.
|
|
If the batch size is no larger than
|
|
`vllm_config.compilation_config.capture_sizes`,
|
|
we can quickly find the padded graph size for a given batch size by
|
|
looking up `vllm_config.compilation_config.bs_to_padded_graph_size`.
|
|
"""
|
|
|
|
# calculate the default `batch_size_capture_list`
|
|
if not envs.VLLM_USE_V1:
|
|
batch_size_capture_list = []
|
|
max_batchsize_to_capture = 0
|
|
if self.scheduler_config is not None and \
|
|
self.model_config is not None and \
|
|
not self.model_config.enforce_eager:
|
|
|
|
possible_sizes = [1, 2, 4] + [8 * i for i in range(1, 1025)]
|
|
# find the minimum size that is larger than max_num_seqs,
|
|
# which then becomes the max_batchsize_to_capture
|
|
larger_sizes = [
|
|
x for x in possible_sizes
|
|
if x >= self.scheduler_config.max_num_seqs
|
|
]
|
|
if larger_sizes:
|
|
max_batchsize_to_capture = larger_sizes[0]
|
|
else:
|
|
max_batchsize_to_capture = possible_sizes[-1]
|
|
|
|
# filter out the sizes that are
|
|
# larger than max_batchsize_to_capture
|
|
batch_size_capture_list = [
|
|
size for size in possible_sizes
|
|
if size <= max_batchsize_to_capture
|
|
]
|
|
else:
|
|
batch_size_capture_list = []
|
|
if self.model_config is not None and \
|
|
not self.model_config.enforce_eager:
|
|
batch_size_capture_list = [1, 2, 4
|
|
] + [i for i in range(8, 513, 8)]
|
|
|
|
self.compilation_config.init_with_cudagraph_sizes(
|
|
batch_size_capture_list)
|
|
|
|
def __str__(self):
|
|
return (
|
|
f"model={self.model_config.model!r},"
|
|
f" speculative_config={self.speculative_config!r},"
|
|
f" tokenizer={self.model_config.tokenizer!r}, "
|
|
f"skip_tokenizer_init={self.model_config.skip_tokenizer_init},"
|
|
f" tokenizer_mode={self.model_config.tokenizer_mode}, "
|
|
f"revision={self.model_config.revision}, "
|
|
f"override_neuron_config={self.model_config.override_neuron_config},"
|
|
f" tokenizer_revision={self.model_config.tokenizer_revision}, "
|
|
f"trust_remote_code={self.model_config.trust_remote_code}, "
|
|
f"dtype={self.model_config.dtype}, "
|
|
f"max_seq_len={self.model_config.max_model_len},"
|
|
f" download_dir={self.load_config.download_dir!r}, "
|
|
f"load_format={self.load_config.load_format}, "
|
|
f"tensor_parallel_size={self.parallel_config.tensor_parallel_size},"
|
|
f" pipeline_parallel_size={self.parallel_config.pipeline_parallel_size}, " # noqa
|
|
f"disable_custom_all_reduce={self.parallel_config.disable_custom_all_reduce}, " # noqa
|
|
f"quantization={self.model_config.quantization}, "
|
|
f"enforce_eager={self.model_config.enforce_eager}, "
|
|
f"kv_cache_dtype={self.cache_config.cache_dtype}, "
|
|
f"quantization_param_path={self.model_config.quantization_param_path},"
|
|
f" device_config={self.device_config.device}, "
|
|
f"decoding_config={self.decoding_config!r}, "
|
|
f"observability_config={self.observability_config!r}, "
|
|
f"seed={self.model_config.seed}, "
|
|
f"served_model_name={self.model_config.served_model_name}, "
|
|
f"num_scheduler_steps={self.scheduler_config.num_scheduler_steps}, "
|
|
f"multi_step_stream_outputs={self.scheduler_config.multi_step_stream_outputs}, " # noqa
|
|
f"enable_prefix_caching={self.cache_config.enable_prefix_caching}, "
|
|
f"chunked_prefill_enabled={self.scheduler_config.chunked_prefill_enabled}, " # noqa
|
|
f"use_async_output_proc={self.model_config.use_async_output_proc}, "
|
|
f"disable_mm_preprocessor_cache={self.model_config.disable_mm_preprocessor_cache!r}, " # noqa
|
|
f"mm_processor_kwargs={self.model_config.mm_processor_kwargs}, "
|
|
f"pooler_config={self.model_config.pooler_config!r}, "
|
|
f"compilation_config={self.compilation_config!r}")
|
|
|
|
|
|
_current_vllm_config: Optional[VllmConfig] = None
|
|
|
|
|
|
@contextmanager
|
|
def set_current_vllm_config(vllm_config: VllmConfig):
|
|
"""
|
|
Temporarily set the current VLLM config.
|
|
Used during model initialization.
|
|
We save the current VLLM config in a global variable,
|
|
so that all modules can access it, e.g. custom ops
|
|
can access the VLLM config to determine how to dispatch.
|
|
"""
|
|
global _current_vllm_config
|
|
old_vllm_config = _current_vllm_config
|
|
from vllm.compilation.counter import compilation_counter
|
|
num_models_seen = compilation_counter.num_models_seen
|
|
try:
|
|
_current_vllm_config = vllm_config
|
|
yield
|
|
finally:
|
|
logger.debug("enabled custom ops: %s",
|
|
vllm_config.compilation_config.enabled_custom_ops)
|
|
logger.debug("disabled custom ops: %s",
|
|
vllm_config.compilation_config.disabled_custom_ops)
|
|
if vllm_config.compilation_config.level == CompilationLevel.PIECEWISE \
|
|
and compilation_counter.num_models_seen == num_models_seen:
|
|
# If the model supports compilation,
|
|
# compilation_counter.num_models_seen should be increased
|
|
# by at least 1.
|
|
# If it is not increased, it means the model does not support
|
|
# compilation (does not have @support_torch_compile decorator).
|
|
logger.warning(
|
|
"`torch.compile` is turned on, but the model %s"
|
|
" does not support it. Please open an issue on GitHub"
|
|
"if you want it to be supported.",
|
|
vllm_config.model_config.model)
|
|
_current_vllm_config = old_vllm_config
|
|
|
|
|
|
def get_current_vllm_config() -> VllmConfig:
|
|
if _current_vllm_config is None:
|
|
# in ci, usually when we test custom ops/modules directly,
|
|
# we don't set the vllm config. In that case, we set a default
|
|
# config.
|
|
logger.warning("Current VLLM config is not set.")
|
|
from vllm.config import VllmConfig
|
|
return VllmConfig()
|
|
return _current_vllm_config
|