
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
291 lines
9.7 KiB
Python
291 lines
9.7 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from itertools import count
|
|
from typing import Callable, Dict, List, Optional
|
|
from typing import Sequence as GenericSequence
|
|
from typing import TypeVar, Union
|
|
from unittest.mock import MagicMock
|
|
|
|
import torch
|
|
|
|
from vllm.engine.arg_utils import EngineArgs
|
|
from vllm.model_executor.layers.sampler import SamplerOutput
|
|
from vllm.model_executor.utils import set_random_seed
|
|
from vllm.sampling_params import SamplingParams
|
|
from vllm.sequence import (CompletionSequenceGroupOutput, Logprob,
|
|
SequenceData, SequenceGroupMetadata, SequenceOutput)
|
|
from vllm.utils import get_distributed_init_method, get_ip, get_open_port
|
|
from vllm.worker.cache_engine import CacheEngine
|
|
from vllm.worker.model_runner import ModelRunner
|
|
from vllm.worker.worker import Worker
|
|
|
|
T = TypeVar("T", bound=Worker)
|
|
|
|
|
|
def round_up_to_next_block(seq_len: int, block_size: int) -> int:
|
|
return (seq_len + block_size - 1) // block_size
|
|
|
|
|
|
def mock_worker(cls=None,
|
|
vocab_size: int = 30_000,
|
|
max_model_len: int = 2048,
|
|
rank: int = 0,
|
|
use_spec: bool = True) -> MagicMock:
|
|
if cls is None:
|
|
cls = Worker
|
|
|
|
spec = cls if use_spec else None
|
|
|
|
worker = MagicMock(spec=spec)
|
|
worker.vocab_size = vocab_size
|
|
worker.max_model_len = max_model_len
|
|
worker.rank = rank
|
|
worker.device = 'cuda:0'
|
|
return worker
|
|
|
|
|
|
def patch_execute_model_with_seeds(worker: Worker, rand_seeds: List[int]):
|
|
seed_iter = iter(rand_seeds)
|
|
original_execute_model = worker.execute_model
|
|
|
|
def new_execute_model(*args, **kwargs):
|
|
result = original_execute_model(*args, **kwargs)
|
|
set_random_seed(next(seed_iter))
|
|
return result
|
|
|
|
return new_execute_model
|
|
|
|
|
|
def zero_kv_cache(cache_engine: List[CacheEngine]):
|
|
assert cache_engine[0].gpu_cache
|
|
for key_blocks, value_blocks in cache_engine[0].gpu_cache:
|
|
key_blocks.zero_()
|
|
value_blocks.zero_()
|
|
|
|
|
|
def create_worker(cls: Callable[..., T],
|
|
model_name: str,
|
|
block_size: int,
|
|
num_gpu_blocks: int,
|
|
seed: int,
|
|
is_driver_worker: bool = True,
|
|
enforce_eager: bool = True,
|
|
model_runner_cls: Optional[ModelRunner] = None,
|
|
dtype: Optional[str] = "auto") -> T:
|
|
engine_args = EngineArgs(
|
|
model=model_name,
|
|
seed=seed,
|
|
block_size=block_size,
|
|
enforce_eager=enforce_eager,
|
|
dtype=dtype,
|
|
)
|
|
engine_config = engine_args.create_engine_config()
|
|
|
|
distributed_init_method = get_distributed_init_method(
|
|
get_ip(), get_open_port())
|
|
|
|
worker = cls(
|
|
vllm_config=engine_config,
|
|
local_rank=0,
|
|
rank=0,
|
|
distributed_init_method=distributed_init_method,
|
|
is_driver_worker=is_driver_worker,
|
|
model_runner_cls=model_runner_cls,
|
|
)
|
|
|
|
worker.init_device()
|
|
worker.load_model()
|
|
|
|
engine_config.cache_config.num_gpu_blocks = num_gpu_blocks
|
|
engine_config.cache_config.num_cpu_blocks = 0
|
|
worker.initialize_cache(
|
|
num_gpu_blocks=engine_config.cache_config.num_gpu_blocks,
|
|
num_cpu_blocks=engine_config.cache_config.num_cpu_blocks)
|
|
|
|
return worker
|
|
|
|
|
|
def create_seq_group_metadata_from_prompts(
|
|
prompts: List[List[int]],
|
|
num_gpu_blocks: int,
|
|
block_size: int,
|
|
final_prompt_lens: List[int],
|
|
continuations: Optional[List[List[int]]] = None,
|
|
seq_ids: Optional[List[int]] = None,
|
|
) -> List[SequenceGroupMetadata]:
|
|
|
|
if continuations is None:
|
|
continuations = [[] for _ in prompts]
|
|
|
|
if seq_ids is None:
|
|
seq_ids = list(i for i, _ in enumerate(prompts))
|
|
|
|
free_gpu_blocks = list(range(num_gpu_blocks))
|
|
|
|
block_allocations = {
|
|
i: [
|
|
free_gpu_blocks.pop()
|
|
for _ in range(round_up_to_next_block(final_len, block_size))
|
|
]
|
|
for i, final_len in enumerate(final_prompt_lens)
|
|
}
|
|
|
|
seq_grou_metadata_list = []
|
|
for i, (prompt_token_ids,
|
|
cont_token_ids) in enumerate(zip(prompts, continuations)):
|
|
data = SequenceData.from_seqs(prompt_token_ids, cont_token_ids)
|
|
data.update_num_computed_tokens(
|
|
len(prompt_token_ids) + len(cont_token_ids) - 1)
|
|
seq_data = {i: data}
|
|
seq_grou_metadata_list.append(
|
|
SequenceGroupMetadata(
|
|
request_id=str(i),
|
|
is_prompt=len(cont_token_ids) == 0,
|
|
seq_data=seq_data,
|
|
sampling_params=SamplingParams(temperature=0.0),
|
|
block_tables={i: block_allocations[i][:]},
|
|
))
|
|
return seq_grou_metadata_list
|
|
|
|
|
|
def create_chunked_seq_group_metadata_from_prompt(
|
|
prompt: List[int],
|
|
num_gpu_blocks: int,
|
|
chunk_size: int,
|
|
block_size: int,
|
|
seq_id: Optional[int] = None) -> List[SequenceGroupMetadata]:
|
|
|
|
if seq_id is None:
|
|
seq_id = 0
|
|
|
|
free_gpu_blocks = list(range(num_gpu_blocks))
|
|
|
|
block_allocations = [
|
|
free_gpu_blocks.pop()
|
|
for _ in range(round_up_to_next_block(len(prompt), block_size))
|
|
]
|
|
|
|
seq_group_metadata_list = []
|
|
for i, idx in enumerate(range(0, len(prompt), chunk_size)):
|
|
chunk_ids = prompt[idx:idx + chunk_size]
|
|
data = SequenceData.from_seqs(prompt)
|
|
data.update_num_computed_tokens(idx)
|
|
seq_data = {i: data}
|
|
seq_group_metadata_list.append(
|
|
SequenceGroupMetadata(
|
|
request_id=str(seq_id),
|
|
is_prompt=True,
|
|
do_sample=idx + chunk_size >= len(prompt), # terminal chunk
|
|
seq_data=seq_data,
|
|
sampling_params=SamplingParams(temperature=0.0),
|
|
block_tables={i: block_allocations},
|
|
token_chunk_size=len(chunk_ids)))
|
|
return seq_group_metadata_list
|
|
|
|
|
|
def assert_logprobs_dict_allclose(
|
|
actual_logprobs: List[Dict[int, Logprob]],
|
|
expected_logprobs: List[Dict[int, Logprob]]) -> None:
|
|
for single_step_actual_logprobs, single_step_expected_logprobs in zip(
|
|
actual_logprobs, expected_logprobs):
|
|
assert set(single_step_actual_logprobs.keys()) == set(
|
|
single_step_expected_logprobs.keys())
|
|
for token_id in single_step_actual_logprobs:
|
|
actual = torch.tensor(
|
|
single_step_actual_logprobs[token_id].logprob)
|
|
expected = torch.tensor(
|
|
single_step_expected_logprobs[token_id].logprob)
|
|
torch.testing.assert_close(actual, expected)
|
|
|
|
|
|
def create_sampler_output_list(
|
|
token_ids: torch.Tensor,
|
|
probs: GenericSequence[Optional[torch.Tensor]],
|
|
logprobs: GenericSequence[Optional[torch.Tensor]],
|
|
seq_ids: Optional[List[int]] = None) -> List[SamplerOutput]:
|
|
num_steps, batch_size = token_ids.shape
|
|
token_ids_by_step = token_ids.tolist()
|
|
|
|
if seq_ids is None:
|
|
seq_ids = list(range(batch_size))
|
|
|
|
return [
|
|
SamplerOutput(outputs=[
|
|
CompletionSequenceGroupOutput(
|
|
samples=[
|
|
SequenceOutput(
|
|
output_token=token_id,
|
|
parent_seq_id=seq_ids[seq_index],
|
|
logprobs={token_id: Logprob(0)},
|
|
)
|
|
],
|
|
prompt_logprobs=None,
|
|
) for seq_index, token_id in enumerate(token_ids_by_step[step])
|
|
],
|
|
sampled_token_probs=probs[step],
|
|
logprobs=logprobs[step],
|
|
sampled_token_ids=token_ids[step])
|
|
for step in range(num_steps)
|
|
]
|
|
|
|
|
|
def create_batch(batch_size,
|
|
k,
|
|
prompt_len: Union[int, List[int]] = 10,
|
|
prev_output_token_len: int = 10,
|
|
seq_ids: Optional[List[int]] = None,
|
|
num_gpu_blocks: Optional[int] = None,
|
|
block_size: Optional[int] = None,
|
|
prefill_chunk_size: Optional[int] = None):
|
|
if block_size is None:
|
|
block_size = 8
|
|
|
|
if num_gpu_blocks is None:
|
|
num_gpu_blocks = 2048 // block_size
|
|
|
|
iterator = count()
|
|
|
|
if isinstance(prompt_len, int):
|
|
prompt_lens = [prompt_len for _ in range(batch_size)]
|
|
else:
|
|
prompt_lens = prompt_len
|
|
|
|
prompts = [[next(iterator) for _ in range(p_len)] for p_len in prompt_lens]
|
|
|
|
if prefill_chunk_size:
|
|
# Create a batch of chunked prompts.
|
|
if not seq_ids:
|
|
seq_ids = list(range(len(prompts)))
|
|
seq_group_metadata_list = []
|
|
for p, sid in zip(prompts, seq_ids):
|
|
seq_group_metadata_list += \
|
|
create_chunked_seq_group_metadata_from_prompt(
|
|
p, num_gpu_blocks, prefill_chunk_size, block_size, sid)
|
|
seq_group_metadata_list = seq_group_metadata_list[:batch_size]
|
|
prev_output_tokens = []
|
|
else:
|
|
prev_output_tokens = [[
|
|
next(iterator) for _ in range(prev_output_token_len)
|
|
] for _ in range(batch_size)]
|
|
final_prompt_lens = [
|
|
len(prompt) + len(prev_output_token) + k + 1
|
|
for prompt, prev_output_token in zip(prompts, prev_output_tokens)
|
|
]
|
|
|
|
seq_group_metadata_list = create_seq_group_metadata_from_prompts(
|
|
prompts, num_gpu_blocks, block_size, final_prompt_lens,
|
|
prev_output_tokens, seq_ids)
|
|
return seq_group_metadata_list, prompts, prev_output_tokens
|
|
|
|
|
|
def maybe_enable_chunked_prefill(prefill_chunk_size, llm_kwargs):
|
|
if prefill_chunk_size > 0:
|
|
llm_kwargs.update(
|
|
**{
|
|
"enable_chunked_prefill": True,
|
|
"max_num_batched_tokens": prefill_chunk_size,
|
|
"max_num_seqs": prefill_chunk_size
|
|
})
|
|
else:
|
|
llm_kwargs["enable_chunked_prefill"] = False
|