vllm/tests/distributed/test_shm_broadcast.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

119 lines
3.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import multiprocessing
import random
import time
from typing import List
import numpy as np
import torch.distributed as dist
from vllm.distributed.device_communicators.shm_broadcast import MessageQueue
from vllm.distributed.utils import StatelessProcessGroup
from vllm.utils import get_ip, get_open_port, update_environment_variables
def get_arrays(n: int, seed: int = 0) -> List[np.ndarray]:
np.random.seed(seed)
sizes = np.random.randint(1, 10_000, n)
# on average, each array will have 5k elements
# with int64, each array will have 40kb
return [np.random.randint(1, 100, i) for i in sizes]
def distributed_run(fn, world_size):
number_of_processes = world_size
processes = []
for i in range(number_of_processes):
env = {}
env['RANK'] = str(i)
env['LOCAL_RANK'] = str(i)
env['WORLD_SIZE'] = str(number_of_processes)
env['LOCAL_WORLD_SIZE'] = str(number_of_processes)
env['MASTER_ADDR'] = 'localhost'
env['MASTER_PORT'] = '12345'
p = multiprocessing.Process(target=fn, args=(env, ))
processes.append(p)
p.start()
for p in processes:
p.join()
for p in processes:
assert p.exitcode == 0
def worker_fn_wrapper(fn):
# `multiprocessing.Process` cannot accept environment variables directly
# so we need to pass the environment variables as arguments
# and update the environment variables in the function
def wrapped_fn(env):
update_environment_variables(env)
dist.init_process_group(backend="gloo")
fn()
return wrapped_fn
@worker_fn_wrapper
def worker_fn():
rank = dist.get_rank()
if rank == 0:
port = get_open_port()
ip = get_ip()
dist.broadcast_object_list([ip, port], src=0)
else:
recv = [None, None]
dist.broadcast_object_list(recv, src=0)
ip, port = recv
stateless_pg = StatelessProcessGroup.create(ip, port, rank,
dist.get_world_size())
for pg in [dist.group.WORLD, stateless_pg]:
writer_rank = 2
broadcaster = MessageQueue.create_from_process_group(
pg, 40 * 1024, 2, writer_rank)
if rank == writer_rank:
seed = random.randint(0, 1000)
dist.broadcast_object_list([seed], writer_rank)
else:
recv = [None]
dist.broadcast_object_list(recv, writer_rank)
seed = recv[0] # type: ignore
if pg == dist.group.WORLD:
dist.barrier()
else:
pg.barrier()
# in case we find a race condition
# print the seed so that we can reproduce the error
print(f"Rank {rank} got seed {seed}")
# test broadcasting with about 400MB of data
N = 10_000
if rank == writer_rank:
arrs = get_arrays(N, seed)
for x in arrs:
broadcaster.broadcast_object(x)
time.sleep(random.random() / 1000)
else:
arrs = get_arrays(N, seed)
for x in arrs:
y = broadcaster.broadcast_object(None)
assert np.array_equal(x, y)
time.sleep(random.random() / 1000)
if pg == dist.group.WORLD:
dist.barrier()
print("torch distributed passed the test!")
else:
pg.barrier()
print("StatelessProcessGroup passed the test!")
def test_shm_broadcast():
distributed_run(worker_fn, 4)