vllm/tests/models/embedding/language/test_embedding.py

46 lines
1.4 KiB
Python

"""Compare the embedding outputs of HF and vLLM models.
Run `pytest tests/models/embedding/language/test_embedding.py`.
"""
import pytest
from ..utils import check_embeddings_close
MODELS = [
"intfloat/e5-mistral-7b-instruct",
"BAAI/bge-multilingual-gemma2",
]
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
def test_models(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
) -> None:
# The example_prompts has ending "\n", for example:
# "Write a short story about a robot that dreams for the first time.\n"
# sentence_transformers will strip the input texts, see:
# https://github.com/UKPLab/sentence-transformers/blob/v3.1.1/sentence_transformers/models/Transformer.py#L159
# This makes the input_ids different between hf_model and vllm_model.
# So we need to strip the input texts to avoid test failing.
example_prompts = [str(s).strip() for s in example_prompts]
with hf_runner(model, dtype=dtype,
is_sentence_transformer=True) as hf_model:
hf_outputs = hf_model.encode(example_prompts)
with vllm_runner(model, dtype=dtype) as vllm_model:
vllm_outputs = vllm_model.encode(example_prompts)
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
tol=1e-2,
)