vllm/tests/prefix_caching/test_prefix_caching.py
shiyi.c_98 d10f8e1d43
[Experimental] Prefix Caching Support (#1669)
Co-authored-by: DouHappy <2278958187@qq.com>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-01-17 16:32:10 -08:00

42 lines
1.8 KiB
Python

"""Compare the with and without prefix caching.
Run `pytest tests/prefix_caching/test_prefix_caching.py`.
"""
import pytest
from vllm import LLM, SamplingParams
prefix = (
"You are an expert school principal, skilled in effectively managing "
"faculty and staff. Draft 10-15 questions for a potential first grade "
"Head Teacher for my K-12, all-girls', independent school that emphasizes "
"community, joyful discovery, and life-long learning. The candidate is "
"coming in for a first-round panel interview for a 8th grade Math "
"teaching role. They have 5 years of previous teaching experience "
"as an assistant teacher at a co-ed, public school with experience "
"in middle school math teaching. Based on these information, fulfill "
"the following paragraph: ")
@pytest.mark.parametrize("model", ["facebook/opt-125m"])
@pytest.mark.parametrize("max_tokens", [16])
def test_prefix_caching(
example_prompts,
model: str,
max_tokens: int,
):
llm = LLM(model=model)
# -1 since the last token can change when concatenating prompts.
prefix_pos = len(llm.llm_engine.tokenizer.encode(prefix)) - 1
prompts = [prefix + prompt for prompt in example_prompts]
sampling_params = SamplingParams(temperature=0.0, max_tokens=max_tokens)
outputs_without_prefix = llm.generate(prompts, sampling_params)
outputs_with_prefix = llm.generate(prompts,
sampling_params,
prefix_pos=[prefix_pos] * len(prompts))
for output_without_prefix, output_with_prefix in zip(
outputs_without_prefix, outputs_with_prefix):
assert (output_without_prefix.outputs[0].token_ids ==
output_with_prefix.outputs[0].token_ids)
assert len(llm.llm_engine.scheduler.prefix_pool.prefixes) == 1