2023-05-25 00:09:07 -07:00

41 lines
1.2 KiB
Python

"""Custom activation functions."""
import torch
import torch.nn as nn
from cacheflow import activation_ops
_ACTIVATION_REGISTRY = {
"gelu": nn.GELU(),
"gelu_new": nn.GELU(approximate="tanh"), # NOTE: This may introduce small rounding errors.
"gelu_fast": nn.GELU(approximate="tanh"), # NOTE: This may introduce small rounding errors.
"relu": nn.ReLU(),
}
def get_act_fn(act_fn: str) -> nn.Module:
"""Get an activation function by name."""
act_fn = act_fn.lower()
if act_fn in _ACTIVATION_REGISTRY:
return _ACTIVATION_REGISTRY[act_fn]
raise ValueError(f"Activation function {act_fn!r} is not supported.")
class SiluAndMul(nn.Module):
"""An activation function for SwiGLU.
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[1] // 2.
"""
def __init__(self):
super().__init__()
def forward(
self,
x: torch.Tensor, # (num_tokens, 2 * d)
) -> torch.Tensor: # (num_tokens, d)
num_tokens = x.shape[0]
d = x.shape[1] // 2
out = torch.empty(num_tokens, d, dtype=x.dtype, device=x.device)
activation_ops.silu_and_mul(out, x)
return out