vllm/cacheflow/models/attention.py
2023-02-23 22:29:46 +00:00

128 lines
4.3 KiB
Python

from typing import Optional
import torch
import torch.nn as nn
import xformers.ops as xops
from cacheflow import ops
from cacheflow.models import InputMetadata
class OPTCacheFlowAttention(nn.Module):
def __init__(self, scale: float) -> None:
super().__init__()
self.scale = scale
# Shape-agnostic attention mask.
self.attention_mask = xops.LowerTriangularMask()
def multi_query_kv_attention(
self,
output: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
) -> None:
query = query.unsqueeze(0)
key = key.unsqueeze(0)
value = value.unsqueeze(0)
out = xops.memory_efficient_attention(
query, key, value, attn_bias=self.attention_mask, scale=self.scale)
out = out.squeeze(0)
# FIXME(woosuk): Directly write the attention output.
output.copy_(out, non_blocking=True)
def single_query_cached_kv_attention(
self,
output: torch.Tensor,
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
input_metadata: InputMetadata,
) -> None:
num_heads = value_cache.shape[1]
head_size = value_cache.shape[3]
block_size = value_cache.shape[2]
block_tables = input_metadata.block_tables
# FIXME(woosuk): Replace the following with a custom op.
for i in range(input_metadata.num_generation_tokens):
q = query[i].unsqueeze(0)
block_table = block_tables[i]
context_len = int(input_metadata.context_lens[i])
keys = []
for j in range(context_len):
block_number = block_table[j // block_size]
block_offset = j % block_size
k = key_cache[block_number, :, :, block_offset, :]
k = k.reshape(num_heads, head_size)
keys.append(k)
keys = torch.stack(keys, dim=0)
values = []
for j in range(context_len):
block_number = block_table[j // block_size]
block_offset = j % block_size
v = value_cache[block_number, :, block_offset, :]
values.append(v)
values = torch.stack(values, dim=0)
q = q.unsqueeze(0)
keys = keys.unsqueeze(0)
values = values.unsqueeze(0)
out = xops.memory_efficient_attention(
q, keys, values, scale=self.scale)
out = out.view(num_heads, head_size)
output[i].copy_(out, non_blocking=True)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
# Reshape the input tensors.
num_heads = value_cache.shape[1]
head_size = value_cache.shape[3]
query = query.view(-1, num_heads, head_size)
key = key.view(-1, num_heads, head_size)
value = value.view(-1, num_heads, head_size)
# Compute the attention op for prompts.
output = torch.empty_like(query)
start_idx = 0
for i in range(input_metadata.num_prompts):
prompt_len = input_metadata.prompt_lens[i]
out = output[start_idx:start_idx + prompt_len]
q = query[start_idx:start_idx + prompt_len]
k = key[start_idx:start_idx + prompt_len]
v = value[start_idx:start_idx + prompt_len]
self.multi_query_kv_attention(out, q, k, v)
start_idx += prompt_len
# Wait until the cache op is done.
if cache_event is not None:
cache_event.wait()
# Reshape the keys and values and store them in the cache.
ops.reshape_and_cache(
key, value, key_cache, value_cache, input_metadata.slot_mapping)
if input_metadata.num_generation_tokens > 0:
# Compute the attention op for generation tokens.
self.single_query_cached_kv_attention(
output[start_idx:],
query[start_idx:],
key_cache,
value_cache,
input_metadata)
# Reshape the output tensor.
return output.view(-1, num_heads * head_size)