vllm/vllm/platforms/rocm.py

189 lines
7.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from functools import lru_cache
from typing import TYPE_CHECKING, Dict, List, Optional
import torch
import vllm.envs as envs
from vllm.logger import init_logger
from .interface import DeviceCapability, Platform, PlatformEnum, _Backend
if TYPE_CHECKING:
from vllm.config import VllmConfig
else:
VllmConfig = None
logger = init_logger(__name__)
try:
import vllm._C # noqa: F401
except ImportError as e:
logger.warning("Failed to import from vllm._C with %r", e)
# import custom ops, trigger op registration
try:
import vllm._rocm_C # noqa: F401
except ImportError as e:
logger.warning("Failed to import from vllm._rocm_C with %r", e)
# Models not supported by ROCm.
_ROCM_UNSUPPORTED_MODELS: List[str] = []
# Models partially supported by ROCm.
# Architecture -> Reason.
_ROCM_SWA_REASON = ("Sliding window attention (SWA) is not yet supported in "
"Triton flash attention. For half-precision SWA support, "
"please use CK flash attention by setting "
"`VLLM_USE_TRITON_FLASH_ATTN=0`")
_ROCM_PARTIALLY_SUPPORTED_MODELS: Dict[str, str] = {
"Qwen2ForCausalLM":
_ROCM_SWA_REASON,
"MistralForCausalLM":
_ROCM_SWA_REASON,
"MixtralForCausalLM":
_ROCM_SWA_REASON,
"PaliGemmaForConditionalGeneration":
("ROCm flash attention does not yet "
"fully support 32-bit precision on PaliGemma"),
"Phi3VForCausalLM":
("ROCm Triton flash attention may run into compilation errors due to "
"excessive use of shared memory. If this happens, disable Triton FA "
"by setting `VLLM_USE_TRITON_FLASH_ATTN=0`")
}
class RocmPlatform(Platform):
_enum = PlatformEnum.ROCM
device_name: str = "rocm"
device_type: str = "cuda"
dispatch_key: str = "CUDA"
ray_device_key: str = "GPU"
# rocm shares the same device control env var as CUDA
device_control_env_var: str = "CUDA_VISIBLE_DEVICES"
supported_quantization: list[str] = [
"awq", "gptq", "fp8", "compressed_tensors", "compressed-tensors",
"fbgemm_fp8", "gguf", "quark", "ptpc_fp8"
]
@classmethod
def get_attn_backend_cls(cls, selected_backend, head_size, dtype,
kv_cache_dtype, block_size, use_v1,
use_mla) -> str:
if use_mla:
logger.info("Using Triton MLA backend.")
return "vllm.attention.backends.triton_mla.TritonMLABackend"
selected_backend = (_Backend.ROCM_FLASH if selected_backend
== _Backend.FLASH_ATTN else selected_backend)
if envs.VLLM_USE_V1:
logger.info("Using ROCm Attention backend on V1 engine.")
return "vllm.v1.attention.backends.rocm_attn.ROCmAttentionBackend"
if selected_backend == _Backend.ROCM_FLASH:
if not cls.has_device_capability(90):
# not Instinct series GPUs.
logger.info("flash_attn is not supported on NAVI GPUs.")
else:
logger.info("%s is not supported in AMD GPUs.", selected_backend)
logger.info("Using ROCmFlashAttention backend.")
return "vllm.attention.backends.rocm_flash_attn.ROCmFlashAttentionBackend" # noqa: E501
@classmethod
@lru_cache(maxsize=8)
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
major, minor = torch.cuda.get_device_capability(device_id)
return DeviceCapability(major=major, minor=minor)
@classmethod
@lru_cache(maxsize=8)
def get_device_name(cls, device_id: int = 0) -> str:
# NOTE: When using V1 this function is called when overriding the
# engine args. Calling torch.cuda.get_device_name(device_id) here
# will result in the ROCm context being initialized before other
# processes can be created.
return "AMD"
@classmethod
def get_device_total_memory(cls, device_id: int = 0) -> int:
device_props = torch.cuda.get_device_properties(device_id)
return device_props.total_memory
@classmethod
def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
if enforce_eager:
logger.warning(
"To see benefits of async output processing, enable CUDA "
"graph. Since, enforce-eager is enabled, async output "
"processor cannot be used")
return False
return True
@classmethod
def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
cache_config = vllm_config.cache_config
if cache_config and cache_config.block_size is None:
cache_config.block_size = 16
parallel_config = vllm_config.parallel_config
scheduler_config = vllm_config.scheduler_config
if parallel_config.worker_cls == "auto":
if scheduler_config.is_multi_step:
if envs.VLLM_USE_V1:
raise NotImplementedError(
"Multi-step scheduling is not supported (and not "
"needed) on VLLM V1. Please launch without "
"--num-scheduler-steps.")
else:
parallel_config.worker_cls = \
"vllm.worker.multi_step_worker.MultiStepWorker"
elif vllm_config.speculative_config:
if envs.VLLM_USE_V1:
raise NotImplementedError(
"Speculative decoding is not yet supported on VLLM V1."
)
else:
parallel_config.worker_cls = \
"vllm.spec_decode.spec_decode_worker.create_spec_worker"
parallel_config.sd_worker_cls = \
"vllm.worker.worker.Worker"
else:
if envs.VLLM_USE_V1:
parallel_config.worker_cls = \
"vllm.v1.worker.gpu_worker.Worker"
else:
parallel_config.worker_cls = "vllm.worker.worker.Worker"
@classmethod
def verify_model_arch(cls, model_arch: str) -> None:
if model_arch in _ROCM_UNSUPPORTED_MODELS:
raise ValueError(f"Model architecture '{model_arch}' is not "
"supported by ROCm for now.")
if model_arch in _ROCM_PARTIALLY_SUPPORTED_MODELS:
msg = _ROCM_PARTIALLY_SUPPORTED_MODELS[model_arch]
logger.warning(
"Model architecture '%s' is partially "
"supported by ROCm: %s", model_arch, msg)
@classmethod
def verify_quantization(cls, quant: str) -> None:
super().verify_quantization(quant)
if quant == "awq" and not envs.VLLM_USE_TRITON_AWQ:
logger.warning(
"Using AWQ quantization with ROCm, but VLLM_USE_TRITON_AWQ"
" is not set, enabling VLLM_USE_TRITON_AWQ.")
envs.VLLM_USE_TRITON_AWQ = True
@classmethod
def get_punica_wrapper(cls) -> str:
return "vllm.lora.punica_wrapper.punica_gpu.PunicaWrapperGPU"
@classmethod
def get_current_memory_usage(cls,
device: Optional[torch.types.Device] = None
) -> float:
torch.cuda.reset_peak_memory_stats(device)
return torch.cuda.mem_get_info(device)[1] - torch.cuda.mem_get_info(
device)[0]