506 lines
19 KiB
Python
506 lines
19 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import json
|
|
import os
|
|
import sys
|
|
import time
|
|
import traceback
|
|
from dataclasses import dataclass, field
|
|
from typing import Optional, Union
|
|
|
|
import aiohttp
|
|
import huggingface_hub.constants
|
|
from tqdm.asyncio import tqdm
|
|
from transformers import (AutoTokenizer, PreTrainedTokenizer,
|
|
PreTrainedTokenizerFast)
|
|
|
|
# NOTE(simon): do not import vLLM here so the benchmark script
|
|
# can run without vLLM installed.
|
|
|
|
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
|
|
|
|
|
|
@dataclass
|
|
class RequestFuncInput:
|
|
prompt: str
|
|
api_url: str
|
|
prompt_len: int
|
|
output_len: int
|
|
model: str
|
|
model_name: Optional[str] = None
|
|
logprobs: Optional[int] = None
|
|
extra_body: Optional[dict] = None
|
|
multi_modal_content: Optional[dict] = None
|
|
ignore_eos: bool = False
|
|
|
|
|
|
@dataclass
|
|
class RequestFuncOutput:
|
|
generated_text: str = ""
|
|
success: bool = False
|
|
latency: float = 0.0
|
|
output_tokens: int = 0
|
|
ttft: float = 0.0 # Time to first token
|
|
itl: list[float] = field(
|
|
default_factory=list) # list of inter-token latencies
|
|
tpot: float = 0.0 # avg next-token latencies
|
|
prompt_len: int = 0
|
|
error: str = ""
|
|
|
|
|
|
async def async_request_tgi(
|
|
request_func_input: RequestFuncInput,
|
|
pbar: Optional[tqdm] = None,
|
|
) -> RequestFuncOutput:
|
|
api_url = request_func_input.api_url
|
|
assert api_url.endswith("generate_stream")
|
|
|
|
async with aiohttp.ClientSession(trust_env=True,
|
|
timeout=AIOHTTP_TIMEOUT) as session:
|
|
params = {
|
|
"max_new_tokens": request_func_input.output_len,
|
|
"do_sample": True,
|
|
"temperature": 0.01, # TGI does not accept 0.0 temperature.
|
|
"top_p": 0.99, # TGI does not accept 1.0 top_p.
|
|
"truncate": request_func_input.prompt_len,
|
|
"ignore_eos_token": request_func_input.ignore_eos,
|
|
}
|
|
payload = {
|
|
"inputs": request_func_input.prompt,
|
|
"parameters": params,
|
|
}
|
|
output = RequestFuncOutput()
|
|
output.prompt_len = request_func_input.prompt_len
|
|
if request_func_input.ignore_eos:
|
|
output.output_tokens = request_func_input.output_len
|
|
else:
|
|
output.output_tokens = None
|
|
|
|
ttft = 0.0
|
|
st = time.perf_counter()
|
|
most_recent_timestamp = st
|
|
try:
|
|
async with session.post(url=api_url, json=payload) as response:
|
|
if response.status == 200:
|
|
async for chunk_bytes in response.content:
|
|
chunk_bytes = chunk_bytes.strip()
|
|
if not chunk_bytes:
|
|
continue
|
|
chunk_bytes = chunk_bytes.decode("utf-8")
|
|
|
|
# NOTE: Sometimes TGI returns a ping response without
|
|
# any data, we should skip it.
|
|
if chunk_bytes.startswith(":"):
|
|
continue
|
|
chunk = chunk_bytes.removeprefix("data:")
|
|
|
|
data = json.loads(chunk)
|
|
timestamp = time.perf_counter()
|
|
# First token
|
|
if ttft == 0.0:
|
|
ttft = time.perf_counter() - st
|
|
output.ttft = ttft
|
|
|
|
# Decoding phase
|
|
else:
|
|
output.itl.append(timestamp -
|
|
most_recent_timestamp)
|
|
|
|
most_recent_timestamp = timestamp
|
|
|
|
output.latency = most_recent_timestamp - st
|
|
output.success = True
|
|
output.generated_text = data["generated_text"]
|
|
else:
|
|
output.error = response.reason or ""
|
|
output.success = False
|
|
except Exception:
|
|
output.success = False
|
|
exc_info = sys.exc_info()
|
|
output.error = "".join(traceback.format_exception(*exc_info))
|
|
|
|
if pbar:
|
|
pbar.update(1)
|
|
return output
|
|
|
|
|
|
async def async_request_trt_llm(
|
|
request_func_input: RequestFuncInput,
|
|
pbar: Optional[tqdm] = None,
|
|
) -> RequestFuncOutput:
|
|
api_url = request_func_input.api_url
|
|
assert api_url.endswith("generate_stream")
|
|
|
|
async with aiohttp.ClientSession(trust_env=True,
|
|
timeout=AIOHTTP_TIMEOUT) as session:
|
|
payload = {
|
|
"accumulate_tokens": True,
|
|
"text_input": request_func_input.prompt,
|
|
"temperature": 0.0,
|
|
"top_p": 1.0,
|
|
"max_tokens": request_func_input.output_len,
|
|
"stream": True,
|
|
}
|
|
if request_func_input.ignore_eos:
|
|
payload["min_length"] = request_func_input.output_len
|
|
output = RequestFuncOutput()
|
|
output.prompt_len = request_func_input.prompt_len
|
|
|
|
ttft = 0.0
|
|
st = time.perf_counter()
|
|
most_recent_timestamp = st
|
|
try:
|
|
async with session.post(url=api_url, json=payload) as response:
|
|
if response.status == 200:
|
|
async for chunk_bytes in response.content:
|
|
chunk_bytes = chunk_bytes.strip()
|
|
if not chunk_bytes:
|
|
continue
|
|
|
|
chunk = chunk_bytes.decode("utf-8").removeprefix(
|
|
"data:")
|
|
|
|
data = json.loads(chunk)
|
|
output.generated_text += data["text_output"]
|
|
timestamp = time.perf_counter()
|
|
# First token
|
|
if ttft == 0.0:
|
|
ttft = timestamp - st
|
|
output.ttft = ttft
|
|
|
|
# Decoding phase
|
|
else:
|
|
output.itl.append(timestamp -
|
|
most_recent_timestamp)
|
|
|
|
most_recent_timestamp = timestamp
|
|
|
|
output.latency = most_recent_timestamp - st
|
|
output.success = True
|
|
|
|
else:
|
|
output.error = response.reason or ""
|
|
output.success = False
|
|
except Exception:
|
|
output.success = False
|
|
exc_info = sys.exc_info()
|
|
output.error = "".join(traceback.format_exception(*exc_info))
|
|
|
|
if pbar:
|
|
pbar.update(1)
|
|
return output
|
|
|
|
|
|
async def async_request_deepspeed_mii(
|
|
request_func_input: RequestFuncInput,
|
|
pbar: Optional[tqdm] = None,
|
|
) -> RequestFuncOutput:
|
|
async with aiohttp.ClientSession(trust_env=True,
|
|
timeout=AIOHTTP_TIMEOUT) as session:
|
|
|
|
payload = {
|
|
"prompt": request_func_input.prompt,
|
|
"max_tokens": request_func_input.output_len,
|
|
"temperature": 0.01, # deepspeed-mii does not accept 0.0 temp.
|
|
"top_p": 1.0,
|
|
}
|
|
output = RequestFuncOutput()
|
|
output.prompt_len = request_func_input.prompt_len
|
|
|
|
# NOTE: DeepSpeed-MII doesn't support streaming as of Jan 28 2024,
|
|
# will use 0 as placeholder.
|
|
# See https://github.com/microsoft/DeepSpeed-MII/pull/311
|
|
output.ttft = 0
|
|
|
|
st = time.perf_counter()
|
|
try:
|
|
async with session.post(url=request_func_input.api_url,
|
|
json=payload) as response:
|
|
if response.status == 200:
|
|
parsed_resp = await response.json()
|
|
output.latency = time.perf_counter() - st
|
|
if "choices" in parsed_resp:
|
|
output.generated_text = parsed_resp["choices"][0][
|
|
"text"]
|
|
elif "text" in parsed_resp:
|
|
output.generated_text = parsed_resp["text"][0]
|
|
else:
|
|
output.error = ("Unexpected response format: "
|
|
"neither 'choices' nor 'text' found")
|
|
output.success = False
|
|
output.success = True
|
|
else:
|
|
output.error = response.reason or ""
|
|
output.success = False
|
|
except Exception:
|
|
output.success = False
|
|
exc_info = sys.exc_info()
|
|
output.error = "".join(traceback.format_exception(*exc_info))
|
|
|
|
if pbar:
|
|
pbar.update(1)
|
|
return output
|
|
|
|
|
|
async def async_request_openai_completions(
|
|
request_func_input: RequestFuncInput,
|
|
pbar: Optional[tqdm] = None,
|
|
) -> RequestFuncOutput:
|
|
api_url = request_func_input.api_url
|
|
assert api_url.endswith(
|
|
("completions", "profile")
|
|
), "OpenAI Completions API URL must end with 'completions' or 'profile'."
|
|
|
|
async with aiohttp.ClientSession(trust_env=True,
|
|
timeout=AIOHTTP_TIMEOUT) as session:
|
|
payload = {
|
|
"model": request_func_input.model_name \
|
|
if request_func_input.model_name else request_func_input.model,
|
|
"prompt": request_func_input.prompt,
|
|
"temperature": 0.0,
|
|
"max_tokens": request_func_input.output_len,
|
|
"logprobs": request_func_input.logprobs,
|
|
"stream": True,
|
|
"stream_options": {
|
|
"include_usage": True,
|
|
},
|
|
}
|
|
if request_func_input.ignore_eos:
|
|
payload["ignore_eos"] = request_func_input.ignore_eos
|
|
if request_func_input.extra_body:
|
|
payload.update(request_func_input.extra_body)
|
|
headers = {
|
|
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
|
|
}
|
|
|
|
output = RequestFuncOutput()
|
|
output.prompt_len = request_func_input.prompt_len
|
|
|
|
generated_text = ""
|
|
st = time.perf_counter()
|
|
most_recent_timestamp = st
|
|
try:
|
|
async with session.post(url=api_url, json=payload,
|
|
headers=headers) as response:
|
|
if response.status == 200:
|
|
first_chunk_received = False
|
|
async for chunk_bytes in response.content:
|
|
chunk_bytes = chunk_bytes.strip()
|
|
if not chunk_bytes:
|
|
continue
|
|
|
|
chunk = chunk_bytes.decode("utf-8").removeprefix(
|
|
"data: ")
|
|
if chunk != "[DONE]":
|
|
data = json.loads(chunk)
|
|
|
|
# NOTE: Some completion API might have a last
|
|
# usage summary response without a token so we
|
|
# want to check a token was generated
|
|
if choices := data.get("choices"):
|
|
# Note that text could be empty here
|
|
# e.g. for special tokens
|
|
text = choices[0].get("text")
|
|
timestamp = time.perf_counter()
|
|
# First token
|
|
if not first_chunk_received:
|
|
first_chunk_received = True
|
|
ttft = time.perf_counter() - st
|
|
output.ttft = ttft
|
|
|
|
# Decoding phase
|
|
else:
|
|
output.itl.append(timestamp -
|
|
most_recent_timestamp)
|
|
|
|
most_recent_timestamp = timestamp
|
|
generated_text += text or ""
|
|
elif usage := data.get("usage"):
|
|
output.output_tokens = usage.get(
|
|
"completion_tokens")
|
|
if first_chunk_received:
|
|
output.success = True
|
|
else:
|
|
output.success = False
|
|
output.error = (
|
|
"Never received a valid chunk to calculate TTFT."
|
|
"This response will be marked as failed!")
|
|
output.generated_text = generated_text
|
|
output.latency = most_recent_timestamp - st
|
|
else:
|
|
output.error = response.reason or ""
|
|
output.success = False
|
|
except Exception:
|
|
output.success = False
|
|
exc_info = sys.exc_info()
|
|
output.error = "".join(traceback.format_exception(*exc_info))
|
|
|
|
if pbar:
|
|
pbar.update(1)
|
|
return output
|
|
|
|
|
|
async def async_request_openai_chat_completions(
|
|
request_func_input: RequestFuncInput,
|
|
pbar: Optional[tqdm] = None,
|
|
) -> RequestFuncOutput:
|
|
api_url = request_func_input.api_url
|
|
assert api_url.endswith(
|
|
("chat/completions", "profile")
|
|
), "OpenAI Chat Completions API URL must end with 'chat/completions'."
|
|
|
|
async with aiohttp.ClientSession(trust_env=True,
|
|
timeout=AIOHTTP_TIMEOUT) as session:
|
|
content = [{"type": "text", "text": request_func_input.prompt}]
|
|
if request_func_input.multi_modal_content:
|
|
content.append(request_func_input.multi_modal_content)
|
|
payload = {
|
|
"model": request_func_input.model_name \
|
|
if request_func_input.model_name else request_func_input.model,
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": content
|
|
},
|
|
],
|
|
"temperature": 0.0,
|
|
"max_completion_tokens": request_func_input.output_len,
|
|
"stream": True,
|
|
"stream_options": {
|
|
"include_usage": True,
|
|
},
|
|
}
|
|
if request_func_input.ignore_eos:
|
|
payload["ignore_eos"] = request_func_input.ignore_eos
|
|
if request_func_input.extra_body:
|
|
payload.update(request_func_input.extra_body)
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
|
|
}
|
|
|
|
output = RequestFuncOutput()
|
|
output.prompt_len = request_func_input.prompt_len
|
|
|
|
generated_text = ""
|
|
ttft = 0.0
|
|
st = time.perf_counter()
|
|
most_recent_timestamp = st
|
|
try:
|
|
async with session.post(url=api_url, json=payload,
|
|
headers=headers) as response:
|
|
if response.status == 200:
|
|
async for chunk_bytes in response.content:
|
|
chunk_bytes = chunk_bytes.strip()
|
|
if not chunk_bytes:
|
|
continue
|
|
|
|
chunk = chunk_bytes.decode("utf-8").removeprefix(
|
|
"data: ")
|
|
if chunk != "[DONE]":
|
|
timestamp = time.perf_counter()
|
|
data = json.loads(chunk)
|
|
|
|
if choices := data.get("choices"):
|
|
content = choices[0]["delta"].get("content")
|
|
# First token
|
|
if ttft == 0.0:
|
|
ttft = timestamp - st
|
|
output.ttft = ttft
|
|
|
|
# Decoding phase
|
|
else:
|
|
output.itl.append(timestamp -
|
|
most_recent_timestamp)
|
|
|
|
generated_text += content or ""
|
|
elif usage := data.get("usage"):
|
|
output.output_tokens = usage.get(
|
|
"completion_tokens")
|
|
|
|
most_recent_timestamp = timestamp
|
|
|
|
output.generated_text = generated_text
|
|
output.success = True
|
|
output.latency = most_recent_timestamp - st
|
|
else:
|
|
output.error = response.reason or ""
|
|
output.success = False
|
|
except Exception:
|
|
output.success = False
|
|
exc_info = sys.exc_info()
|
|
output.error = "".join(traceback.format_exception(*exc_info))
|
|
|
|
if pbar:
|
|
pbar.update(1)
|
|
return output
|
|
|
|
|
|
def get_model(pretrained_model_name_or_path: str) -> str:
|
|
if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true':
|
|
from modelscope import snapshot_download
|
|
|
|
from vllm.model_executor.model_loader.weight_utils import get_lock
|
|
|
|
# Use file lock to prevent multiple processes from
|
|
# downloading the same model weights at the same time.
|
|
with get_lock(pretrained_model_name_or_path):
|
|
model_path = snapshot_download(
|
|
model_id=pretrained_model_name_or_path,
|
|
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
|
|
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"])
|
|
|
|
return model_path
|
|
return pretrained_model_name_or_path
|
|
|
|
|
|
def get_tokenizer(
|
|
pretrained_model_name_or_path: str,
|
|
tokenizer_mode: str = "auto",
|
|
trust_remote_code: bool = False,
|
|
**kwargs,
|
|
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
|
|
if pretrained_model_name_or_path is not None and not os.path.exists(
|
|
pretrained_model_name_or_path):
|
|
pretrained_model_name_or_path = get_model(
|
|
pretrained_model_name_or_path)
|
|
if tokenizer_mode == "slow":
|
|
if kwargs.get("use_fast", False):
|
|
raise ValueError(
|
|
"Cannot use the fast tokenizer in slow tokenizer mode.")
|
|
kwargs["use_fast"] = False
|
|
if tokenizer_mode == "mistral":
|
|
try:
|
|
from vllm.transformers_utils.tokenizer import MistralTokenizer
|
|
except ImportError as e:
|
|
raise ImportError("MistralTokenizer requires vllm package.\n"
|
|
"Please install it with `pip install vllm` "
|
|
"to use mistral tokenizer mode.") from e
|
|
return MistralTokenizer.from_pretrained(
|
|
str(pretrained_model_name_or_path))
|
|
else:
|
|
return AutoTokenizer.from_pretrained(
|
|
pretrained_model_name_or_path,
|
|
trust_remote_code=trust_remote_code,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
ASYNC_REQUEST_FUNCS = {
|
|
"tgi": async_request_tgi,
|
|
"vllm": async_request_openai_completions,
|
|
"lmdeploy": async_request_openai_completions,
|
|
"deepspeed-mii": async_request_deepspeed_mii,
|
|
"openai": async_request_openai_completions,
|
|
"openai-chat": async_request_openai_chat_completions,
|
|
"tensorrt-llm": async_request_trt_llm,
|
|
"scalellm": async_request_openai_completions,
|
|
"sglang": async_request_openai_completions,
|
|
}
|
|
|
|
OPENAI_COMPATIBLE_BACKENDS = [
|
|
k for k, v in ASYNC_REQUEST_FUNCS.items()
|
|
if v in (async_request_openai_completions,
|
|
async_request_openai_chat_completions)
|
|
]
|