237 lines
6.9 KiB
Python
237 lines
6.9 KiB
Python
"""An example showing how to use vLLM to serve multimodal models
|
|
and run online inference with OpenAI client.
|
|
|
|
Launch the vLLM server with the following command:
|
|
|
|
(single image inference with Llava)
|
|
vllm serve llava-hf/llava-1.5-7b-hf --chat-template template_llava.jinja
|
|
|
|
(multi-image inference with Phi-3.5-vision-instruct)
|
|
vllm serve microsoft/Phi-3.5-vision-instruct --task generate \
|
|
--trust-remote-code --max-model-len 4096 --limit-mm-per-prompt image=2
|
|
|
|
(audio inference with Ultravox)
|
|
vllm serve fixie-ai/ultravox-v0_3 --max-model-len 4096
|
|
"""
|
|
import base64
|
|
|
|
import requests
|
|
from openai import OpenAI
|
|
|
|
from vllm.assets.audio import AudioAsset
|
|
from vllm.utils import FlexibleArgumentParser
|
|
|
|
# Modify OpenAI's API key and API base to use vLLM's API server.
|
|
openai_api_key = "EMPTY"
|
|
openai_api_base = "http://localhost:8000/v1"
|
|
|
|
client = OpenAI(
|
|
# defaults to os.environ.get("OPENAI_API_KEY")
|
|
api_key=openai_api_key,
|
|
base_url=openai_api_base,
|
|
)
|
|
|
|
models = client.models.list()
|
|
model = models.data[0].id
|
|
|
|
|
|
def encode_base64_content_from_url(content_url: str) -> str:
|
|
"""Encode a content retrieved from a remote url to base64 format."""
|
|
|
|
with requests.get(content_url) as response:
|
|
response.raise_for_status()
|
|
result = base64.b64encode(response.content).decode('utf-8')
|
|
|
|
return result
|
|
|
|
|
|
# Text-only inference
|
|
def run_text_only() -> None:
|
|
chat_completion = client.chat.completions.create(
|
|
messages=[{
|
|
"role": "user",
|
|
"content": "What's the capital of France?"
|
|
}],
|
|
model=model,
|
|
max_completion_tokens=64,
|
|
)
|
|
|
|
result = chat_completion.choices[0].message.content
|
|
print("Chat completion output:", result)
|
|
|
|
|
|
# Single-image input inference
|
|
def run_single_image() -> None:
|
|
|
|
## Use image url in the payload
|
|
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
|
chat_completion_from_url = client.chat.completions.create(
|
|
messages=[{
|
|
"role":
|
|
"user",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "What's in this image?"
|
|
},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": image_url
|
|
},
|
|
},
|
|
],
|
|
}],
|
|
model=model,
|
|
max_completion_tokens=64,
|
|
)
|
|
|
|
result = chat_completion_from_url.choices[0].message.content
|
|
print("Chat completion output from image url:", result)
|
|
|
|
## Use base64 encoded image in the payload
|
|
image_base64 = encode_base64_content_from_url(image_url)
|
|
chat_completion_from_base64 = client.chat.completions.create(
|
|
messages=[{
|
|
"role":
|
|
"user",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "What's in this image?"
|
|
},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": f"data:image/jpeg;base64,{image_base64}"
|
|
},
|
|
},
|
|
],
|
|
}],
|
|
model=model,
|
|
max_completion_tokens=64,
|
|
)
|
|
|
|
result = chat_completion_from_base64.choices[0].message.content
|
|
print("Chat completion output from base64 encoded image:", result)
|
|
|
|
|
|
# Multi-image input inference
|
|
def run_multi_image() -> None:
|
|
image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg"
|
|
image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg"
|
|
chat_completion_from_url = client.chat.completions.create(
|
|
messages=[{
|
|
"role":
|
|
"user",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "What are the animals in these images?"
|
|
},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": image_url_duck
|
|
},
|
|
},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": image_url_lion
|
|
},
|
|
},
|
|
],
|
|
}],
|
|
model=model,
|
|
max_completion_tokens=64,
|
|
)
|
|
|
|
result = chat_completion_from_url.choices[0].message.content
|
|
print("Chat completion output:", result)
|
|
|
|
|
|
# Audio input inference
|
|
def run_audio() -> None:
|
|
# Any format supported by librosa is supported
|
|
audio_url = AudioAsset("winning_call").url
|
|
|
|
# Use audio url in the payload
|
|
chat_completion_from_url = client.chat.completions.create(
|
|
messages=[{
|
|
"role":
|
|
"user",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "What's in this audio?"
|
|
},
|
|
{
|
|
"type": "audio_url",
|
|
"audio_url": {
|
|
"url": audio_url
|
|
},
|
|
},
|
|
],
|
|
}],
|
|
model=model,
|
|
max_completion_tokens=64,
|
|
)
|
|
|
|
result = chat_completion_from_url.choices[0].message.content
|
|
print("Chat completion output from audio url:", result)
|
|
|
|
audio_base64 = encode_base64_content_from_url(audio_url)
|
|
chat_completion_from_base64 = client.chat.completions.create(
|
|
messages=[{
|
|
"role":
|
|
"user",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "What's in this audio?"
|
|
},
|
|
{
|
|
"type": "audio_url",
|
|
"audio_url": {
|
|
# Any format supported by librosa is supported
|
|
"url": f"data:audio/ogg;base64,{audio_base64}"
|
|
},
|
|
},
|
|
],
|
|
}],
|
|
model=model,
|
|
max_completion_tokens=64,
|
|
)
|
|
|
|
result = chat_completion_from_base64.choices[0].message.content
|
|
print("Chat completion output from base64 encoded audio:", result)
|
|
|
|
|
|
example_function_map = {
|
|
"text-only": run_text_only,
|
|
"single-image": run_single_image,
|
|
"multi-image": run_multi_image,
|
|
"audio": run_audio,
|
|
}
|
|
|
|
|
|
def main(args) -> None:
|
|
chat_type = args.chat_type
|
|
example_function_map[chat_type]()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = FlexibleArgumentParser(
|
|
description='Demo on using OpenAI client for online inference with '
|
|
'multimodal language models served with vLLM.')
|
|
parser.add_argument(
|
|
'--chat-type',
|
|
'-c',
|
|
type=str,
|
|
default="single-image",
|
|
choices=["text-only", "single-image", "multi-image", "audio"],
|
|
help='Conversation type with multimodal data.')
|
|
args = parser.parse_args()
|
|
main(args)
|