vllm/tests/model_executor/test_model_load_with_params.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

124 lines
4.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import os
import pytest
from vllm.model_executor.layers.pooler import CLSPool, PoolingType
from vllm.model_executor.models.bert import BertEmbeddingModel
from vllm.model_executor.models.roberta import RobertaEmbeddingModel
from vllm.platforms import current_platform
MAX_MODEL_LEN = 128
MODEL_NAME = os.environ.get("MODEL_NAME", "BAAI/bge-base-en-v1.5")
REVISION = os.environ.get("REVISION", "main")
MODEL_NAME_ROBERTA = os.environ.get("MODEL_NAME",
"intfloat/multilingual-e5-large")
REVISION_ROBERTA = os.environ.get("REVISION", "main")
@pytest.mark.skipif(current_platform.is_rocm(),
reason="Xformers backend is not supported on ROCm.")
def test_model_loading_with_params(vllm_runner):
"""
Test parameter weight loading with tp>1.
"""
with vllm_runner(model_name=MODEL_NAME,
revision=REVISION,
dtype="float16",
max_model_len=MAX_MODEL_LEN) as vllm_model:
output = vllm_model.encode("Write a short story about a robot that"
" dreams for the first time.\n")
model_config = vllm_model.model.llm_engine.model_config
model_tokenizer = vllm_model.model.llm_engine.tokenizer
# asserts on the bert model config file
assert model_config.encoder_config["max_seq_length"] == 512
assert model_config.encoder_config["do_lower_case"]
# asserts on the pooling config files
assert model_config.pooler_config.pooling_type == PoolingType.CLS.name
assert model_config.pooler_config.pooling_norm
# asserts on the tokenizer loaded
assert model_tokenizer.tokenizer_id == "BAAI/bge-base-en-v1.5"
assert model_tokenizer.tokenizer_config["do_lower_case"]
assert model_tokenizer.tokenizer.model_max_length == 512
def check_model(model):
assert isinstance(model, BertEmbeddingModel)
assert model._pooler.pooling_type == PoolingType.CLS
assert model._pooler.normalize
vllm_model.apply_model(check_model)
# assert output
assert output
@pytest.mark.skipif(current_platform.is_rocm(),
reason="Xformers backend is not supported on ROCm.")
def test_roberta_model_loading_with_params(vllm_runner):
"""
Test parameter weight loading with tp>1.
"""
with vllm_runner(model_name=MODEL_NAME_ROBERTA,
revision=REVISION_ROBERTA,
dtype="float16",
max_model_len=MAX_MODEL_LEN) as vllm_model:
output = vllm_model.encode("Write a short story about a robot that"
" dreams for the first time.\n")
model_config = vllm_model.model.llm_engine.model_config
model_tokenizer = vllm_model.model.llm_engine.tokenizer
# asserts on the bert model config file
assert model_config.encoder_config["max_seq_length"] == 512
assert not model_config.encoder_config["do_lower_case"]
# asserts on the pooling config files
assert model_config.pooler_config.pooling_type == PoolingType.MEAN.name
assert model_config.pooler_config.pooling_norm
# asserts on the tokenizer loaded
assert model_tokenizer.tokenizer_id == "intfloat/multilingual-e5-large"
assert not model_tokenizer.tokenizer_config["do_lower_case"]
def check_model(model):
assert isinstance(model, RobertaEmbeddingModel)
assert model._pooler.pooling_type == PoolingType.MEAN
assert model._pooler.normalize
vllm_model.apply_model(check_model)
# assert output
assert output
@pytest.mark.skipif(current_platform.is_rocm(),
reason="Xformers backend is not supported on ROCm.")
def test_facebook_roberta_model_loading_with_params(vllm_runner):
"""
Test loading roberta-base model with no lm_head.
"""
model_name = "FacebookAI/roberta-base"
with vllm_runner(model_name=model_name,
dtype="float16",
max_model_len=MAX_MODEL_LEN) as vllm_model:
output = vllm_model.encode("Write a short story about a robot that"
" dreams for the first time.\n")
model_tokenizer = vllm_model.model.llm_engine.tokenizer
assert model_tokenizer.tokenizer_id == model_name
def check_model(model):
assert isinstance(model, RobertaEmbeddingModel)
assert not hasattr(model, "lm_head")
assert isinstance(model._pooler, CLSPool)
vllm_model.apply_model(check_model)
assert output