vllm/vllm/platforms/interface.py
Mengqing Cao b87c21fc89
[Misc][Platform] Move use allgather to platform (#14010)
Signed-off-by: Mengqing Cao <cmq0113@163.com>
2025-03-03 15:40:04 +08:00

350 lines
11 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import enum
import platform
import random
from platform import uname
from typing import TYPE_CHECKING, NamedTuple, Optional, Tuple, Union
import numpy as np
import torch
from vllm.logger import init_logger
if TYPE_CHECKING:
from vllm.config import VllmConfig
from vllm.utils import FlexibleArgumentParser
else:
VllmConfig = None
FlexibleArgumentParser = None
logger = init_logger(__name__)
def in_wsl() -> bool:
# Reference: https://github.com/microsoft/WSL/issues/4071
return "microsoft" in " ".join(uname()).lower()
class _Backend(enum.Enum):
FLASH_ATTN = enum.auto()
FLASH_ATTN_VLLM_V1 = enum.auto()
XFORMERS = enum.auto()
ROCM_FLASH = enum.auto()
TORCH_SDPA = enum.auto()
OPENVINO = enum.auto()
FLASHINFER = enum.auto()
TRITON_MLA = enum.auto() # Supported by V1
FLASHMLA = enum.auto() # Supported by V1
HPU_ATTN = enum.auto()
PALLAS = enum.auto()
PALLAS_VLLM_V1 = enum.auto()
IPEX = enum.auto()
BLOCK_SPARSE_FLASH_ATTN = enum.auto()
NO_ATTENTION = enum.auto()
class PlatformEnum(enum.Enum):
CUDA = enum.auto()
ROCM = enum.auto()
TPU = enum.auto()
HPU = enum.auto()
XPU = enum.auto()
CPU = enum.auto()
NEURON = enum.auto()
OPENVINO = enum.auto()
OOT = enum.auto()
UNSPECIFIED = enum.auto()
class CpuArchEnum(enum.Enum):
X86 = enum.auto()
ARM = enum.auto()
POWERPC = enum.auto()
OTHER = enum.auto()
UNKNOWN = enum.auto()
class DeviceCapability(NamedTuple):
major: int
minor: int
def as_version_str(self) -> str:
return f"{self.major}.{self.minor}"
def to_int(self) -> int:
"""
Express device capability as an integer ``<major><minor>``.
It is assumed that the minor version is always a single digit.
"""
assert 0 <= self.minor < 10
return self.major * 10 + self.minor
class Platform:
_enum: PlatformEnum
device_name: str
device_type: str
# available dispatch keys:
# check https://github.com/pytorch/pytorch/blob/313dac6c1ca0fa0cde32477509cce32089f8532a/torchgen/model.py#L134 # noqa
# use "CPU" as a fallback for platforms not registered in PyTorch
dispatch_key: str = "CPU"
# available ray device keys:
# https://github.com/ray-project/ray/blob/10ba5adadcc49c60af2c358a33bb943fb491a171/python/ray/_private/ray_constants.py#L438 # noqa
# empty string means the device does not support ray
ray_device_key: str = ""
# platform-agnostic way to specify the device control environment variable,
# .e.g. CUDA_VISIBLE_DEVICES for CUDA.
# hint: search for "get_visible_accelerator_ids_env_var" in
# https://github.com/ray-project/ray/tree/master/python/ray/_private/accelerators # noqa
device_control_env_var: str = "VLLM_DEVICE_CONTROL_ENV_VAR_PLACEHOLDER"
# The torch.compile backend for compiling simple and
# standalone functions. The default value is "inductor" to keep
# the same behavior as PyTorch.
# NOTE: for the forward part of the model, vLLM has another separate
# compilation strategy.
simple_compile_backend: str = "inductor"
supported_quantization: list[str] = []
def is_cuda(self) -> bool:
return self._enum == PlatformEnum.CUDA
def is_rocm(self) -> bool:
return self._enum == PlatformEnum.ROCM
def is_tpu(self) -> bool:
return self._enum == PlatformEnum.TPU
def is_hpu(self) -> bool:
return self._enum == PlatformEnum.HPU
def is_xpu(self) -> bool:
return self._enum == PlatformEnum.XPU
def is_cpu(self) -> bool:
return self._enum == PlatformEnum.CPU
def is_neuron(self) -> bool:
return self._enum == PlatformEnum.NEURON
def is_openvino(self) -> bool:
return self._enum == PlatformEnum.OPENVINO
def is_out_of_tree(self) -> bool:
return self._enum == PlatformEnum.OOT
def is_cuda_alike(self) -> bool:
"""Stateless version of :func:`torch.cuda.is_available`."""
return self._enum in (PlatformEnum.CUDA, PlatformEnum.ROCM)
@classmethod
def get_attn_backend_cls(cls, selected_backend: _Backend, head_size: int,
dtype: torch.dtype, kv_cache_dtype: Optional[str],
block_size: int, use_v1: bool,
use_mla: bool) -> str:
"""Get the attention backend class of a device."""
return ""
@classmethod
def get_device_capability(
cls,
device_id: int = 0,
) -> Optional[DeviceCapability]:
"""Stateless version of :func:`torch.cuda.get_device_capability`."""
return None
@classmethod
def has_device_capability(
cls,
capability: Union[Tuple[int, int], int],
device_id: int = 0,
) -> bool:
"""
Test whether this platform is compatible with a device capability.
The ``capability`` argument can either be:
- A tuple ``(major, minor)``.
- An integer ``<major><minor>``. (See :meth:`DeviceCapability.to_int`)
"""
current_capability = cls.get_device_capability(device_id=device_id)
if current_capability is None:
return False
if isinstance(capability, tuple):
return current_capability >= capability
return current_capability.to_int() >= capability
@classmethod
def get_device_name(cls, device_id: int = 0) -> str:
"""Get the name of a device."""
raise NotImplementedError
@classmethod
def get_device_uuid(cls, device_id: int = 0) -> str:
"""Get the uuid of a device, e.g. the PCI bus ID."""
raise NotImplementedError
@classmethod
def get_device_total_memory(cls, device_id: int = 0) -> int:
"""Get the total memory of a device in bytes."""
raise NotImplementedError
@classmethod
def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
"""
Check if the current platform supports async output.
"""
raise NotImplementedError
@classmethod
def inference_mode(cls):
"""A device-specific wrapper of `torch.inference_mode`.
This wrapper is recommended because some hardware backends such as TPU
do not support `torch.inference_mode`. In such a case, they will fall
back to `torch.no_grad` by overriding this method.
"""
return torch.inference_mode(mode=True)
@classmethod
def seed_everything(cls, seed: Optional[int] = None) -> None:
"""
Set the seed of each random module.
`torch.manual_seed` will set seed on all devices.
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
"""
if seed is not None:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
@classmethod
def pre_register_and_update(cls,
parser: Optional[FlexibleArgumentParser] = None
) -> None:
"""
Do some pre-registeration or update action for the current platform.
This function is called before global VllmConfig is initialized or cli
arguments are parsed. It's used for out-of-tree platforms to register or
update the configuration.
For example, the out-of-tree quantization config can be imported and
registered here dynamically.
"""
pass
@classmethod
def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
"""
Check and update the configuration for the current platform.
It can raise an exception if the configuration is not compatible with
the current platform, or it can update the configuration to make it
compatible with the current platform.
The config is passed by reference, so it can be modified in place.
"""
pass
@classmethod
def verify_model_arch(cls, model_arch: str) -> None:
"""
Verify whether the current platform supports the specified model
architecture.
- This will raise an Error or Warning based on the model support on
the current platform.
- By default all models are considered supported.
"""
pass
@classmethod
def verify_quantization(cls, quant: str) -> None:
"""
Verify whether the quantization is supported by the current platform.
"""
if cls.supported_quantization and \
quant not in cls.supported_quantization:
raise ValueError(
f"{quant} quantization is currently not supported in "
f"{cls.device_name}.")
@classmethod
def get_cpu_architecture(cls) -> CpuArchEnum:
"""
Determine the CPU architecture of the current system.
Returns CpuArchEnum indicating the architecture type.
"""
machine = platform.machine().lower()
if machine in ("x86_64", "amd64", "i386", "i686"):
return CpuArchEnum.X86
elif machine.startswith("arm") or machine.startswith("aarch"):
return CpuArchEnum.ARM
elif machine.startswith("ppc"):
return CpuArchEnum.POWERPC
return CpuArchEnum.OTHER if machine else CpuArchEnum.UNKNOWN
@classmethod
def is_pin_memory_available(cls) -> bool:
"""Checks whether pin memory is available on the current platform."""
if in_wsl():
# Pinning memory in WSL is not supported.
# https://docs.nvidia.com/cuda/wsl-user-guide/index.html#known-limitations-for-linux-cuda-applications
logger.warning("Using 'pin_memory=False' as WSL is detected. "
"This may slow down the performance.")
return False
return True
@classmethod
def get_current_memory_usage(cls,
device: Optional[torch.types.Device] = None
) -> float:
"""
Return the memory usage in bytes.
"""
raise NotImplementedError
@classmethod
def get_punica_wrapper(cls) -> str:
"""
Return the punica wrapper for current platform.
"""
raise NotImplementedError
@classmethod
def get_device_communicator_cls(cls) -> str:
"""
Get device specific communicator class for distributed communication.
"""
return "vllm.distributed.device_communicators.base_device_communicator.DeviceCommunicatorBase" # noqa
@classmethod
def use_all_gather(cls) -> bool:
"""
Whether to use allgather in LogitsProcessor to gather the logits.
"""
import vllm.envs as envs
from vllm.config import get_current_vllm_config
parallel_config = get_current_vllm_config().parallel_config
return (envs.VLLM_USE_V1
or parallel_config.distributed_executor_backend
== "external_launcher")
class UnspecifiedPlatform(Platform):
_enum = PlatformEnum.UNSPECIFIED
device_type = ""