vllm/vllm/inputs/data.py
Tobias Pitters b6087a6bee
[mypy] Pass type checking in vllm/inputs (#11680)
Signed-off-by: Tobias Pitters <tobias.pitters@gmail.com>
2025-01-02 16:18:15 +00:00

404 lines
13 KiB
Python

from dataclasses import dataclass
from functools import cached_property
from typing import (TYPE_CHECKING, Any, Dict, Generic, Iterable, List, Literal,
Optional, Tuple, Union, cast)
import torch
from typing_extensions import NotRequired, TypedDict, TypeVar, assert_never
if TYPE_CHECKING:
from vllm.multimodal import (MultiModalDataDict, MultiModalKwargs,
MultiModalPlaceholderDict)
from vllm.multimodal.inputs import MultiModalInputsV2
class TextPrompt(TypedDict):
"""Schema for a text prompt."""
prompt: str
"""The input text to be tokenized before passing to the model."""
multi_modal_data: NotRequired["MultiModalDataDict"]
"""
Optional multi-modal data to pass to the model,
if the model supports it.
"""
mm_processor_kwargs: NotRequired[Dict[str, Any]]
"""
Optional multi-modal processor kwargs to be forwarded to the
multimodal input mapper & processor. Note that if multiple modalities
have registered mappers etc for the model being considered, we attempt
to pass the mm_processor_kwargs to each of them.
"""
class TokensPrompt(TypedDict):
"""Schema for a tokenized prompt."""
prompt_token_ids: List[int]
"""A list of token IDs to pass to the model."""
token_type_ids: NotRequired[List[int]]
"""A list of token type IDs to pass to the cross encoder model."""
multi_modal_data: NotRequired["MultiModalDataDict"]
"""
DEPRECATED: Optional multi-modal data to pass to the model,
if the model supports it.
"""
mm_processor_kwargs: NotRequired[Dict[str, Any]]
"""
DEPRECATED: Optional multi-modal processor kwargs to be forwarded to the
multimodal input mapper & processor. Note that if multiple modalities
have registered mappers etc for the model being considered, we attempt
to pass the mm_processor_kwargs to each of them.
"""
SingletonPrompt = Union[str, TextPrompt, TokensPrompt]
"""
Set of possible schemas for a single prompt:
- A text prompt (:class:`str` or :class:`TextPrompt`)
- A tokenized prompt (:class:`TokensPrompt`)
Note that "singleton" is as opposed to a data structure
which encapsulates multiple prompts, i.e. of the sort
which may be utilized for encoder/decoder models when
the user desires to express both the encoder & decoder
prompts explicitly, i.e. :class:`ExplicitEncoderDecoderPrompt`
A prompt of type :class:`SingletonPrompt` may be employed
as (1) input to a decoder-only model, (2) input to
the encoder of an encoder/decoder model, in the scenario
where the decoder-prompt is not specified explicitly, or
(3) as a member of a larger data structure encapsulating
more than one prompt, i.e. :class:`ExplicitEncoderDecoderPrompt`
"""
_T1_co = TypeVar("_T1_co",
bound=SingletonPrompt,
default=SingletonPrompt,
covariant=True)
_T2_co = TypeVar("_T2_co",
bound=SingletonPrompt,
default=SingletonPrompt,
covariant=True)
# TODO: Make fields ReadOnly once mypy supports it
class ExplicitEncoderDecoderPrompt(TypedDict, Generic[_T1_co, _T2_co]):
"""
Represents an encoder/decoder model input prompt,
comprising an explicit encoder prompt and a decoder prompt.
The encoder and decoder prompts, respectively, may be formatted
according to any of the :class:`SingletonPrompt` schemas,
and are not required to have the same schema.
Only the encoder prompt may have multi-modal data. mm_processor_kwargs
should be at the top-level, and should not be set in the encoder/decoder
prompts, since they are agnostic to the encoder/decoder.
Note that an :class:`ExplicitEncoderDecoderPrompt` may not
be used as an input to a decoder-only model,
and that the :code:`encoder_prompt` and :code:`decoder_prompt`
fields of this data structure themselves must be
:class:`SingletonPrompt` instances.
"""
encoder_prompt: _T1_co
decoder_prompt: Optional[_T2_co]
mm_processor_kwargs: NotRequired[Dict[str, Any]]
PromptType = Union[SingletonPrompt, ExplicitEncoderDecoderPrompt]
"""
Set of possible schemas for an LLM input, including
both decoder-only and encoder/decoder input types:
- A text prompt (:class:`str` or :class:`TextPrompt`)
- A tokenized prompt (:class:`TokensPrompt`)
- A single data structure containing both an encoder and a decoder prompt
(:class:`ExplicitEncoderDecoderPrompt`)
"""
class TokenInputs(TypedDict):
"""Represents token-based inputs."""
type: Literal["token"]
"""The type of inputs."""
prompt_token_ids: List[int]
"""The token IDs of the prompt."""
token_type_ids: NotRequired[List[int]]
"""The token type IDs of the prompt."""
prompt: NotRequired[str]
"""
The original prompt text corresponding to the token IDs, if available.
"""
multi_modal_data: NotRequired["MultiModalDataDict"]
"""
Optional multi-modal data to pass to the model,
if the model supports it.
"""
multi_modal_inputs: NotRequired["MultiModalKwargs"]
"""
Optional multi-modal inputs to pass to the model,
if the model supports it.
"""
multi_modal_placeholders: NotRequired["MultiModalPlaceholderDict"]
"""
Placeholder ranges for the multi-modal data.
"""
multi_modal_hashes: NotRequired[List[str]]
"""
The hashes of the multi-modal data.
"""
mm_processor_kwargs: NotRequired[Dict[str, Any]]
"""
Optional multi-modal processor kwargs to be forwarded to the
multimodal input mapper & processor. Note that if multiple modalities
have registered mappers etc for the model being considered, we attempt
to pass the mm_processor_kwargs to each of them.
"""
def token_inputs(
prompt_token_ids: List[int],
token_type_ids: Optional[List[int]] = None,
prompt: Optional[str] = None,
multi_modal_data: Optional["MultiModalDataDict"] = None,
multi_modal_inputs: Optional["MultiModalKwargs"] = None,
multi_modal_hashes: Optional[List[str]] = None,
multi_modal_placeholders: Optional["MultiModalPlaceholderDict"] = None,
mm_processor_kwargs: Optional[Dict[str, Any]] = None,
) -> TokenInputs:
"""Construct :class:`TokenInputs` from optional values."""
inputs = TokenInputs(type="token", prompt_token_ids=prompt_token_ids)
if prompt is not None:
inputs["prompt"] = prompt
if token_type_ids is not None:
inputs["token_type_ids"] = token_type_ids
if multi_modal_data is not None:
inputs["multi_modal_data"] = multi_modal_data
if multi_modal_inputs is not None:
inputs["multi_modal_inputs"] = multi_modal_inputs
if multi_modal_hashes is not None:
inputs["multi_modal_hashes"] = multi_modal_hashes
if multi_modal_placeholders is not None:
inputs["multi_modal_placeholders"] = multi_modal_placeholders
if mm_processor_kwargs is not None:
inputs["mm_processor_kwargs"] = mm_processor_kwargs
return inputs
DecoderOnlyInputs = Union[TokenInputs, "MultiModalInputsV2"]
"""
The inputs in :class:`~vllm.LLMEngine` before they are
passed to the model executor.
This specifies the data required for decoder-only models.
"""
class EncoderDecoderInputs(TypedDict):
"""
The inputs in :class:`~vllm.LLMEngine` before they are
passed to the model executor.
This specifies the required data for encoder-decoder models.
"""
encoder: Union[TokenInputs, "MultiModalInputsV2"]
"""The inputs for the encoder portion."""
decoder: Union[TokenInputs, "MultiModalInputsV2"]
"""The inputs for the decoder portion."""
SingletonInputs = Union[TokenInputs, "MultiModalInputsV2"]
"""
A processed :class:`SingletonPrompt` which can be passed to
:class:`vllm.sequence.Sequence`.
"""
@dataclass
class SingletonInputsAdapter:
"""
Unified interface to access the components of :class:`SingletonInputs`.
"""
inputs: SingletonInputs
@cached_property
def prompt(self) -> Optional[str]:
inputs = self.inputs
if inputs["type"] == "token" or inputs["type"] == "multimodal":
return inputs.get("prompt")
assert_never(inputs) # type: ignore[arg-type]
@cached_property
def prompt_token_ids(self) -> List[int]:
inputs = self.inputs
if inputs["type"] == "token" or inputs["type"] == "multimodal":
return inputs.get("prompt_token_ids", [])
assert_never(inputs) # type: ignore[arg-type]
@cached_property
def token_type_ids(self) -> List[int]:
inputs = self.inputs
if inputs["type"] == "token" or inputs["type"] == "multimodal":
return inputs.get("token_type_ids", [])
assert_never(inputs) # type: ignore[arg-type]
@cached_property
def prompt_embeds(self) -> Optional[torch.Tensor]:
inputs = self.inputs
if inputs["type"] == "token" or inputs["type"] == "multimodal":
return None
assert_never(inputs) # type: ignore[arg-type]
@cached_property
def multi_modal_data(self) -> "MultiModalDataDict":
inputs = self.inputs
if inputs["type"] == "token":
return inputs.get("multi_modal_data", {})
if inputs["type"] == "multimodal":
return inputs.get("mm_kwargs", {})
assert_never(inputs) # type: ignore[arg-type]
@cached_property
def multi_modal_inputs(self) -> Union[Dict, "MultiModalKwargs"]:
inputs = self.inputs
if inputs["type"] == "token":
return inputs.get("multi_modal_inputs", {})
if inputs["type"] == "multimodal":
return inputs.get("mm_kwargs", {})
assert_never(inputs) # type: ignore[arg-type]
@cached_property
def multi_modal_hashes(self) -> List[str]:
inputs = self.inputs
if inputs["type"] == "token":
return inputs.get("multi_modal_hashes", [])
if inputs["type"] == "multimodal":
# only the case when we use MultiModalInputsV2
return inputs.get("mm_hashes", []) # type: ignore[return-value]
assert_never(inputs) # type: ignore[arg-type]
@cached_property
def multi_modal_placeholders(self) -> "MultiModalPlaceholderDict":
inputs = self.inputs
if inputs["type"] == "token":
return inputs.get("multi_modal_placeholders", {})
if inputs["type"] == "multimodal":
return inputs.get("mm_placeholders", {})
assert_never(inputs) # type: ignore[arg-type]
@cached_property
def mm_processor_kwargs(self) -> Dict[str, Any]:
inputs = self.inputs
if inputs["type"] == "token":
return inputs.get("mm_processor_kwargs", {})
if inputs["type"] == "multimodal":
return {}
assert_never(inputs) # type: ignore[arg-type]
ProcessorInputs = Union[DecoderOnlyInputs, EncoderDecoderInputs]
"""
The inputs to :data:`vllm.inputs.InputProcessor`.
"""
_T1 = TypeVar("_T1", bound=SingletonPrompt, default=SingletonPrompt)
_T2 = TypeVar("_T2", bound=SingletonPrompt, default=SingletonPrompt)
def build_explicit_enc_dec_prompt(
encoder_prompt: _T1,
decoder_prompt: Optional[_T2],
mm_processor_kwargs: Optional[Dict[str, Any]] = None,
) -> ExplicitEncoderDecoderPrompt[_T1, _T2]:
if mm_processor_kwargs is None:
mm_processor_kwargs = {}
return ExplicitEncoderDecoderPrompt(
encoder_prompt=encoder_prompt,
decoder_prompt=decoder_prompt,
mm_processor_kwargs=mm_processor_kwargs)
def zip_enc_dec_prompts(
enc_prompts: Iterable[_T1],
dec_prompts: Iterable[Optional[_T2]],
mm_processor_kwargs: Optional[Union[Iterable[Dict[str, Any]],
Dict[str, Any]]] = None,
) -> List[ExplicitEncoderDecoderPrompt[_T1, _T2]]:
"""
Zip encoder and decoder prompts together into a list of
:class:`ExplicitEncoderDecoderPrompt` instances.
``mm_processor_kwargs`` may also be provided; if a dict is passed, the same
dictionary will be used for every encoder/decoder prompt. If an iterable is
provided, it will be zipped with the encoder/decoder prompts.
"""
if mm_processor_kwargs is None:
mm_processor_kwargs = cast(Dict[str, Any], {})
if isinstance(mm_processor_kwargs, dict):
return [
build_explicit_enc_dec_prompt(
encoder_prompt, decoder_prompt,
cast(Dict[str, Any], mm_processor_kwargs))
for (encoder_prompt,
decoder_prompt) in zip(enc_prompts, dec_prompts)
]
return [
build_explicit_enc_dec_prompt(encoder_prompt, decoder_prompt,
mm_proc_kwargs)
for (encoder_prompt, decoder_prompt, mm_proc_kwargs
) in zip(enc_prompts, dec_prompts, mm_processor_kwargs)
]
def to_enc_dec_tuple_list(
enc_dec_prompts: Iterable[ExplicitEncoderDecoderPrompt[_T1, _T2]],
) -> List[Tuple[_T1, Optional[_T2]]]:
return [(enc_dec_prompt["encoder_prompt"],
enc_dec_prompt["decoder_prompt"])
for enc_dec_prompt in enc_dec_prompts]