
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
217 lines
7.8 KiB
Python
217 lines
7.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import asyncio
|
|
import os
|
|
import sys
|
|
from typing import List, Optional
|
|
from unittest.mock import patch
|
|
|
|
import pytest
|
|
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
|
|
|
from vllm.transformers_utils.tokenizer_group import (TokenizerGroup,
|
|
get_tokenizer_group)
|
|
from vllm.transformers_utils.tokenizer_group.ray_tokenizer_group import (
|
|
RayTokenizerGroupPool)
|
|
|
|
from ..conftest import get_tokenizer_pool_config
|
|
|
|
|
|
class CustomTokenizerGroup(TokenizerGroup):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self._i = 0
|
|
|
|
def encode(self, *args, **kwargs):
|
|
self._i += 1
|
|
return super().encode(*args, **kwargs)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("tokenizer_group_type",
|
|
[None, "ray", CustomTokenizerGroup])
|
|
async def test_tokenizer_group(tokenizer_group_type):
|
|
reference_tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
|
tokenizer_group = get_tokenizer_group(
|
|
get_tokenizer_pool_config(tokenizer_group_type),
|
|
tokenizer_id="gpt2",
|
|
enable_lora=False,
|
|
max_num_seqs=1,
|
|
max_input_length=None,
|
|
)
|
|
assert reference_tokenizer.encode("prompt") == tokenizer_group.encode(
|
|
request_id="request_id", prompt="prompt", lora_request=None)
|
|
assert reference_tokenizer.encode(
|
|
"prompt") == await tokenizer_group.encode_async(
|
|
request_id="request_id", prompt="prompt", lora_request=None)
|
|
assert isinstance(tokenizer_group.get_lora_tokenizer(None),
|
|
PreTrainedTokenizerBase)
|
|
assert tokenizer_group.get_lora_tokenizer(
|
|
None) == await tokenizer_group.get_lora_tokenizer_async(None)
|
|
if tokenizer_group_type is CustomTokenizerGroup:
|
|
assert tokenizer_group._i > 0
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("tokenizer_group_type", ["ray"])
|
|
async def test_tokenizer_group_pool(tokenizer_group_type):
|
|
reference_tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
|
tokenizer_group_pool = get_tokenizer_group(
|
|
get_tokenizer_pool_config(tokenizer_group_type),
|
|
tokenizer_id="gpt2",
|
|
enable_lora=False,
|
|
max_num_seqs=1,
|
|
max_input_length=None,
|
|
)
|
|
# Send multiple requests to the tokenizer group pool
|
|
# (more than the pool size)
|
|
# and check that all requests are processed correctly.
|
|
num_requests = tokenizer_group_pool.pool_size * 5
|
|
requests = [
|
|
tokenizer_group_pool.encode_async(request_id=str(i),
|
|
prompt=f"prompt {i}",
|
|
lora_request=None)
|
|
for i in range(num_requests)
|
|
]
|
|
results = await asyncio.gather(*requests)
|
|
expected_results = [
|
|
reference_tokenizer.encode(f"prompt {i}") for i in range(num_requests)
|
|
]
|
|
assert results == expected_results
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("tokenizer_group_type", ["ray"])
|
|
async def test_tokenizer_group_ray_pool_env_var_propagation(
|
|
tokenizer_group_type):
|
|
"""Test that env vars from caller process are propagated to
|
|
tokenizer Ray actors."""
|
|
env_var = "MY_ENV_VAR"
|
|
|
|
class EnvVarCheckerTokenizerGroup(TokenizerGroup):
|
|
|
|
def ping(self):
|
|
assert os.environ.get(env_var) == "1"
|
|
return super().ping()
|
|
|
|
class EnvVarCheckerRayTokenizerGroupPool(RayTokenizerGroupPool):
|
|
_worker_cls = EnvVarCheckerTokenizerGroup
|
|
|
|
tokenizer_pool_config = get_tokenizer_pool_config(tokenizer_group_type)
|
|
tokenizer_pool = EnvVarCheckerRayTokenizerGroupPool.from_config(
|
|
tokenizer_pool_config,
|
|
tokenizer_id="gpt2",
|
|
enable_lora=False,
|
|
max_num_seqs=1,
|
|
max_input_length=None)
|
|
with pytest.raises(AssertionError):
|
|
tokenizer_pool.ping()
|
|
|
|
with patch.dict(os.environ, {env_var: "1"}):
|
|
tokenizer_pool_config = get_tokenizer_pool_config(tokenizer_group_type)
|
|
tokenizer_pool = EnvVarCheckerRayTokenizerGroupPool.from_config(
|
|
tokenizer_pool_config,
|
|
tokenizer_id="gpt2",
|
|
enable_lora=False,
|
|
max_num_seqs=1,
|
|
max_input_length=None)
|
|
tokenizer_pool.ping()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("tokenizer_group_type", ["ray"])
|
|
async def test_tokenizer_group_ray_pool_fault_tolerance(tokenizer_group_type):
|
|
"""Test that Ray tokenizer pool group can recover from failures and
|
|
if that's not possible, mark itself as unhealthy."""
|
|
|
|
class FailingTokenizerGroup(TokenizerGroup):
|
|
|
|
def __init__(self,
|
|
*args,
|
|
fail_at: Optional[List[int]] = None,
|
|
**kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.i = 0
|
|
self.fail_at = fail_at or []
|
|
|
|
def encode(self, *args, **kwargs):
|
|
self.i += 1
|
|
if self.i in self.fail_at:
|
|
sys.exit(1)
|
|
return super().encode(*args, **kwargs)
|
|
|
|
class FailingRayTokenizerGroupPool(RayTokenizerGroupPool):
|
|
_worker_cls = FailingTokenizerGroup
|
|
|
|
# Fail at first iteration
|
|
fail_at = [1]
|
|
tokenizer_pool_config = get_tokenizer_pool_config(tokenizer_group_type)
|
|
tokenizer_group_pool = FailingRayTokenizerGroupPool.from_config(
|
|
tokenizer_pool_config,
|
|
tokenizer_id="gpt2",
|
|
enable_lora=False,
|
|
max_num_seqs=1,
|
|
max_input_length=None,
|
|
fail_at=fail_at)
|
|
tokenizer_actors = tokenizer_group_pool.tokenizer_actors.copy()
|
|
|
|
# Modify fail at to not fail at all (will be re-read when actor is
|
|
# re-initialized).
|
|
fail_at[0] = 1000
|
|
|
|
# We should recover successfully.
|
|
await tokenizer_group_pool.encode_async(request_id="1",
|
|
prompt="prompt",
|
|
lora_request=None)
|
|
await tokenizer_group_pool.encode_async(request_id="1",
|
|
prompt="prompt",
|
|
lora_request=None)
|
|
|
|
# Check that we have a new actor
|
|
assert len(tokenizer_group_pool.tokenizer_actors) == len(tokenizer_actors)
|
|
assert tokenizer_group_pool.tokenizer_actors != tokenizer_actors
|
|
|
|
# Fail at first iteration
|
|
fail_at = [1]
|
|
tokenizer_group_pool = FailingRayTokenizerGroupPool.from_config(
|
|
tokenizer_pool_config,
|
|
tokenizer_id="gpt2",
|
|
enable_lora=False,
|
|
max_num_seqs=1,
|
|
max_input_length=None,
|
|
fail_at=fail_at)
|
|
|
|
# We should fail after re-initialization.
|
|
with pytest.raises(RuntimeError):
|
|
await tokenizer_group_pool.encode_async(request_id="1",
|
|
prompt="prompt",
|
|
lora_request=None)
|
|
|
|
# check_health should raise the same thing
|
|
with pytest.raises(RuntimeError):
|
|
tokenizer_group_pool.check_health()
|
|
|
|
# Ensure that non-ActorDiedErrors are still propagated correctly and do not
|
|
# cause a re-initialization.
|
|
fail_at = []
|
|
tokenizer_group_pool = FailingRayTokenizerGroupPool.from_config(
|
|
tokenizer_pool_config,
|
|
tokenizer_id="gpt2",
|
|
enable_lora=False,
|
|
max_num_seqs=1,
|
|
max_input_length=2,
|
|
fail_at=fail_at)
|
|
tokenizer_actors = tokenizer_group_pool.tokenizer_actors.copy()
|
|
|
|
# Prompt too long error
|
|
with pytest.raises(ValueError):
|
|
await tokenizer_group_pool.encode_async(request_id="1",
|
|
prompt="prompt" * 100,
|
|
lora_request=None)
|
|
await tokenizer_group_pool.encode_async(request_id="1",
|
|
prompt="prompt",
|
|
lora_request=None)
|
|
# Actors should stay the same.
|
|
assert tokenizer_group_pool.tokenizer_actors == tokenizer_actors
|