Cyrus Leung b489fc3c91
[CI/Build] Update CPU tests to include all "standard" tests (#5481)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-08 23:30:04 +08:00

130 lines
4.1 KiB
Python

from typing import Optional, Tuple
import pytest
import torch
from PIL.Image import Image
from transformers import AutoConfig
# Import the functions to test
from vllm.model_executor.models.h2ovl import (calculate_num_blocks,
image_to_pixel_values_wrapper)
from vllm.multimodal.utils import rescale_image_size
models = [
"h2oai/h2ovl-mississippi-800m", # Replace with your actual model names
"h2oai/h2ovl-mississippi-2b",
]
def run_preprocessing_test(
image: Image,
config,
max_dynamic_patch: Optional[int] = None,
) -> Tuple[torch.Tensor, int]:
"""Test the image preprocessing and calculate expected blocks."""
if max_dynamic_patch is None:
max_dynamic_patch = config.max_dynamic_patch
width, height = image.size
use_MSAC = config.use_msac
# Create the mapper function with the provided configuration
mapper = image_to_pixel_values_wrapper(config, max_dynamic_patch, use_MSAC)
pixel_values = mapper(image)
# Calculate the expected number of blocks
if use_MSAC:
# First pass
blocks1, _, _, aspect_ratio = calculate_num_blocks(
width,
height,
config.min_dynamic_patch,
max_dynamic_patch,
config.vision_config.image_size,
use_thumbnail=False, # Thumbnail is handled separately
prior_aspect_ratio=None,
)
# Second pass
blocks2, _, _, _ = calculate_num_blocks(
width,
height,
config.min_dynamic_patch,
max_dynamic_patch,
config.vision_config.image_size,
use_thumbnail=False,
prior_aspect_ratio=aspect_ratio,
)
# Add thumbnail if use_thumbnail is True and total_blocks > 1
if config.use_thumbnail:
blocks1 += 1 if blocks1 > 1 else 0
blocks2 += 1 if blocks2 > 1 else 0
# Total blocks is the sum of blocks from both passes minus overlapping
total_blocks = blocks1 + blocks2 - 1
expected_blocks = total_blocks
else:
blocks, _, _, _ = calculate_num_blocks(
width,
height,
config.min_dynamic_patch,
max_dynamic_patch,
config.vision_config.image_size,
use_thumbnail=False,
prior_aspect_ratio=None,
)
expected_blocks = blocks
if config.use_thumbnail and expected_blocks > 1:
expected_blocks += 1
return pixel_values, expected_blocks
@pytest.mark.parametrize("model_name", models)
@pytest.mark.parametrize(
"size_factors",
[
# Single-scale
[1.0],
# Single-scale, batched
[1.0, 1.0, 1.0],
# Multi-scale
[0.25, 0.5, 1.0],
],
)
@pytest.mark.parametrize("max_dynamic_patch", [None, 2, 4, 8])
def test_image_preprocessing(image_assets, model_name, size_factors,
max_dynamic_patch):
"""Test image preprocessing pipeline with different configurations."""
# Load the configuration from the model
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
for asset in image_assets:
image = asset.pil_image
for factor in size_factors:
scaled_image = rescale_image_size(image, factor)
# Test preprocessing and get expected number of blocks
pixel_values, expected_blocks = run_preprocessing_test(
scaled_image, config, max_dynamic_patch)
# Verify output shapes and properties
actual_blocks = pixel_values.shape[0]
assert actual_blocks == expected_blocks, (
f"Expected {expected_blocks} blocks, got {actual_blocks}")
# Check image dimensions
expected_size = (
3, # Number of channels (C, H, W)
config.vision_config.image_size,
config.vision_config.image_size,
)
for img in pixel_values:
assert img.shape == expected_size, (
f"Expected image size {expected_size}, got {img.shape}")