vllm/vllm/executor/gpu_executor.py
leiwen83 b38e42fbca
[Speculative decoding] Add ngram prompt lookup decoding (#4237)
Co-authored-by: Lei Wen <wenlei03@qiyi.com>
2024-05-01 11:13:03 -07:00

170 lines
6.3 KiB
Python

from typing import Any, Dict, List, Optional, Set, Tuple
from vllm.executor.executor_base import ExecutorAsyncBase, ExecutorBase
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
from vllm.utils import (get_distributed_init_method, get_ip, get_open_port,
make_async)
from vllm.worker.worker_base import WorkerWrapperBase
logger = init_logger(__name__)
class GPUExecutor(ExecutorBase):
def _init_executor(self) -> None:
"""Initialize the worker and load the model.
If speculative decoding is enabled, we instead create the speculative
worker.
"""
if self.speculative_config is None:
self._init_non_spec_worker()
else:
self._init_spec_worker()
def _get_worker_kwargs(
self,
local_rank: int = 0,
rank: int = 0,
distributed_init_method: Optional[str] = None) -> Dict[str, Any]:
"""Return worker init args for a given rank."""
if distributed_init_method is None:
distributed_init_method = get_distributed_init_method(
get_ip(), get_open_port())
return dict(
model_config=self.model_config,
parallel_config=self.parallel_config,
scheduler_config=self.scheduler_config,
device_config=self.device_config,
cache_config=self.cache_config,
load_config=self.load_config,
local_rank=local_rank,
rank=rank,
distributed_init_method=distributed_init_method,
lora_config=self.lora_config,
vision_language_config=self.vision_language_config,
is_driver_worker=rank == 0,
)
def _create_worker(self,
local_rank: int = 0,
rank: int = 0,
distributed_init_method: Optional[str] = None):
wrapper = WorkerWrapperBase(
worker_module_name="vllm.worker.worker",
worker_class_name="Worker",
)
wrapper.init_worker(**self._get_worker_kwargs(local_rank, rank,
distributed_init_method))
return wrapper.worker
def _init_non_spec_worker(self):
assert self.parallel_config.world_size == 1, (
"GPUExecutor only supports single GPU.")
self.driver_worker = self._create_worker()
self.driver_worker.init_device()
self.driver_worker.load_model()
def _init_spec_worker(self):
"""Initialize a SpecDecodeWorker, using a draft model for proposals.
"""
assert self.speculative_config is not None
from vllm.spec_decode.spec_decode_worker import SpecDecodeWorker
target_worker = self._create_worker()
draft_worker_kwargs = self._get_worker_kwargs()
# Override draft-model specific worker args.
draft_worker_kwargs.update(
model_config=self.speculative_config.draft_model_config,
parallel_config=self.speculative_config.draft_parallel_config,
# TODO allow draft-model specific load config.
#load_config=self.load_config,
)
spec_decode_worker = SpecDecodeWorker.create_worker(
scorer_worker=target_worker,
draft_worker_kwargs=draft_worker_kwargs,
)
assert self.parallel_config.world_size == 1, (
"GPUExecutor only supports single GPU.")
self.driver_worker = spec_decode_worker
# Load model handled in spec decode worker.
self.driver_worker.init_device()
def determine_num_available_blocks(self) -> Tuple[int, int]:
"""Determine the number of available KV blocks by invoking the
underlying worker.
"""
return self.driver_worker.determine_num_available_blocks()
def initialize_cache(self, num_gpu_blocks: int, num_cpu_blocks) -> None:
"""Initialize the KV cache by invoking the underlying worker.
"""
# NOTE: This is logged in the executor because there can be >1 worker
# with other executors. We could log in the engine level, but work
# remains to abstract away the device for non-GPU configurations.
logger.info("# GPU blocks: %d, # CPU blocks: %d", num_gpu_blocks,
num_cpu_blocks)
self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks)
def execute_model(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
blocks_to_swap_in: Dict[int, int],
blocks_to_swap_out: Dict[int, int],
blocks_to_copy: Dict[int, List[int]],
num_lookahead_slots: int,
) -> List[SamplerOutput]:
output = self.driver_worker.execute_model(
seq_group_metadata_list=seq_group_metadata_list,
blocks_to_swap_in=blocks_to_swap_in,
blocks_to_swap_out=blocks_to_swap_out,
blocks_to_copy=blocks_to_copy,
num_lookahead_slots=num_lookahead_slots,
)
return output
def add_lora(self, lora_request: LoRARequest) -> bool:
assert lora_request.lora_int_id > 0, "lora_id must be greater than 0."
return self.driver_worker.add_lora(lora_request)
def remove_lora(self, lora_id: int) -> bool:
assert lora_id > 0, "lora_id must be greater than 0."
return self.driver_worker.remove_lora(lora_id)
def list_loras(self) -> Set[int]:
return self.driver_worker.list_loras()
def check_health(self) -> None:
# GPUExecutor will always be healthy as long as
# it's running.
return
class GPUExecutorAsync(GPUExecutor, ExecutorAsyncBase):
async def execute_model_async(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
blocks_to_swap_in: Dict[int, int],
blocks_to_swap_out: Dict[int, int],
blocks_to_copy: Dict[int, List[int]],
num_lookahead_slots: int,
) -> List[SamplerOutput]:
output = await make_async(self.driver_worker.execute_model)(
seq_group_metadata_list=seq_group_metadata_list,
blocks_to_swap_in=blocks_to_swap_in,
blocks_to_swap_out=blocks_to_swap_out,
blocks_to_copy=blocks_to_copy,
num_lookahead_slots=num_lookahead_slots)
return output