vllm/tests/lora/utils.py
Jee Jee Li b278557935
[Kernel][LoRA]Punica prefill kernels fusion (#11234)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Signed-off-by: Abatom <abzhonghua@gmail.com>
Co-authored-by: Zhonghua Deng <abatom@163.com>
2025-01-07 04:01:39 +00:00

340 lines
10 KiB
Python

from typing import Dict, List, Optional
import torch
from vllm.lora.lora import LoRALayerWeights, PackedLoRALayerWeights
class DummyLoRAManager:
def __init__(self, device: torch.device = "cuda:0"):
super().__init__()
self._loras: Dict[str, LoRALayerWeights] = {}
self._device = device
def set_module_lora(self, module_name: str, lora: LoRALayerWeights):
self._loras[module_name] = lora
def get_module_lora(self, module_name: str) -> LoRALayerWeights:
return self._loras[module_name]
def init_random_lora(
self,
module_name: str,
weight: torch.Tensor,
rank: int = 8,
generate_embeddings_tensor: int = 0,
):
lora = LoRALayerWeights(
module_name,
rank=rank,
lora_alpha=1,
lora_a=torch.rand([weight.shape[1], rank],
dtype=weight.dtype,
device=self._device),
lora_b=torch.rand([rank, weight.shape[0]],
dtype=weight.dtype,
device=self._device),
)
if generate_embeddings_tensor:
lora.embeddings_tensor = torch.rand(
5,
generate_embeddings_tensor,
dtype=weight.dtype,
device=self._device,
)
self.set_module_lora(module_name, lora)
return lora
def init_lora(
self,
module_name: str,
input_dim: int,
output_dim: int,
rank=8,
noop=False,
embeddings_tensor=None,
):
lora = LoRALayerWeights(
module_name,
rank=rank,
lora_alpha=1,
lora_a=torch.rand([input_dim, rank], device="cuda"),
lora_b=torch.rand([rank, output_dim], device="cuda"),
embeddings_tensor=embeddings_tensor,
)
self.set_module_lora(module_name, lora)
return lora
def reset_lora(self):
self._loras = {}
def init_packed_lora(
self,
module_name: str,
input_dim: int,
output_dims: List[int],
noop_lora_index: Optional[List[int]] = None,
rank: int = 8,
):
base_loras: List[LoRALayerWeights] = []
noop_lora_index_set = set(noop_lora_index or [])
for i, out_dim in enumerate(output_dims):
base_lora = self.init_lora(
module_name + "_000_" + str(i),
input_dim,
out_dim,
rank=rank,
noop=i in noop_lora_index_set,
)
base_loras.append(base_lora)
packed_lora = PackedLoRALayerWeights.pack(base_loras)
self.set_module_lora(module_name, packed_lora)
return packed_lora
def assert_close(a, b):
rtol, atol = {
torch.float16: (6e-2, 6e-2),
torch.bfloat16: (6e-2, 6e-2),
torch.float32: (1e-2, 1e-2),
}[a.dtype]
torch.testing.assert_close(a, b, rtol=rtol, atol=atol)
def ref_torch_groupgemm(
out_tensor,
inputs,
lora_weights,
lora_indices_tensor,
seq_len_tensor,
batches,
scaling,
op_type,
) -> torch.Tensor:
out_list = []
current_offset = 0
for lora_index, b_length in zip(range(batches), seq_len_tensor):
input_weight = inputs[current_offset:b_length + current_offset, :]
current_offset += b_length
lora_weight = lora_weights[lora_indices_tensor[lora_index]]
result = torch.nn.functional.linear(input_weight, lora_weight)
result *= scaling
out_list.append(result)
cat_result = torch.cat(out_list, dim=0)
if op_type == "expand":
out_tensor += cat_result
else:
out_tensor.copy_(cat_result)
return
def generate_data(
batches,
hidden_size,
lora_nums,
max_rank,
seq_length,
dtype,
op_type,
device,
):
seq_len_tensor = torch.randint(seq_length, seq_length + 1,
(batches, )).to(device)
b_seq_start_loc = torch.cumsum(
torch.tensor([0] + seq_len_tensor[:-1].tolist(), dtype=torch.long),
dim=0,
).to(device)
total_tokens = seq_len_tensor.sum()
if op_type == "shrink":
inputs_tensor = torch.rand((total_tokens, hidden_size),
dtype=dtype).to(device)
lora_weights = torch.rand(
(lora_nums, max_rank, hidden_size), # col-major
dtype=dtype,
).to(device)
# shrink op need atomic_add, so output is initinized by 0
ref_out_tensor = torch.zeros((total_tokens, max_rank),
dtype=dtype,
device=inputs_tensor.device)
# NOTE shrink kernel using torch.float32 as output type
our_out_tensor = torch.zeros((total_tokens, max_rank),
dtype=torch.float32).to(device)
else:
inputs_tensor = torch.rand(
(total_tokens, max_rank),
dtype=dtype,
).to(device)
lora_weights = torch.rand(
(lora_nums, hidden_size, max_rank), # col-major
dtype=dtype,
).to(device)
# expand op needs to complete y+=a@lora_b, so output is
# initinized randomly
ref_out_tensor = torch.rand(
(total_tokens, hidden_size),
dtype=dtype,
).to(device)
# Ensure the same input.
our_out_tensor = ref_out_tensor.clone()
lora_indices_tensor = torch.randint(0,
lora_nums - 1 if lora_nums > 1 else 1,
(batches, )).to(device)
indices = torch.zeros((total_tokens), dtype=torch.long).to(device)
current_offset = 0
for b_id in range(batches):
lora_index = lora_indices_tensor[b_id]
indices[current_offset:current_offset +
seq_len_tensor[b_id]].copy_(lora_index)
current_offset += seq_len_tensor[b_id].item()
return (
inputs_tensor,
lora_weights,
our_out_tensor,
ref_out_tensor,
b_seq_start_loc,
lora_indices_tensor,
seq_len_tensor,
indices,
)
def generate_data_for_expand_nslices(
batches,
hidden_size,
lora_nums,
max_rank,
seq_length,
dtype,
nslices,
device,
):
seq_len_tensor = torch.randint(seq_length, seq_length + 1,
(batches, )).to(device)
b_seq_start_loc = torch.cumsum(
torch.tensor([0] + seq_len_tensor[:-1].tolist(), dtype=torch.long),
dim=0,
).to(device)
total_tokens = seq_len_tensor.sum()
inputs_tensor = torch.rand(
(total_tokens, max_rank),
dtype=dtype,
).to(device)
lora_weights_lst = []
for _ in range(nslices):
lora_weights_lst.append(
torch.rand(
(lora_nums, hidden_size, max_rank), # col-major
dtype=dtype,
).to(device))
# expand op needs to complete y+=a@lora_b, so output is
# initinized randomly
ref_out_tensor = torch.rand((total_tokens, hidden_size * nslices),
dtype=dtype).to(device)
# Ensure the same input.
our_out_tensor = ref_out_tensor.clone()
lora_indices_tensor = torch.randint(0,
lora_nums - 1 if lora_nums > 1 else 1,
(batches, ))
indices = torch.zeros((total_tokens), dtype=torch.long).to(device)
current_offset = 0
for b_id in range(batches):
lora_index = lora_indices_tensor[b_id]
indices[current_offset:current_offset +
seq_len_tensor[b_id]] = (lora_index.item())
current_offset += seq_len_tensor[b_id].item()
lora_indices_tensor = lora_indices_tensor.to(device)
return (
inputs_tensor,
lora_weights_lst,
our_out_tensor,
ref_out_tensor,
b_seq_start_loc,
lora_indices_tensor,
seq_len_tensor,
indices,
)
def generate_data_for_nslices(
batches,
hidden_size,
lora_nums,
max_rank,
seq_length,
nslices,
dtype,
op_type,
device,
):
seq_len_tensor = torch.randint(seq_length, seq_length + 1,
(batches, )).to(device)
b_seq_start_loc = torch.cumsum(
torch.tensor([0] + seq_len_tensor[:-1].tolist(), dtype=torch.long),
dim=0,
).to(device)
total_tokens = seq_len_tensor.sum()
lora_weights_lst = []
if op_type == "shrink":
inputs_tensor = torch.rand((total_tokens, hidden_size),
dtype=dtype).to(device)
for _ in range(nslices):
if op_type == "shrink":
lora_weights_lst.append(
torch.rand(
(lora_nums, max_rank, hidden_size), # col-major
dtype=dtype,
).to(device))
# NOTE shrink kernel using torch.float32 as output type
# shrink op need atomic_add, so output is initinized by 0
our_out_tensor = torch.zeros(
(nslices, total_tokens, max_rank),
dtype=torch.float32,
).to(device)
else:
inputs_tensor = torch.rand(
(nslices, total_tokens, max_rank),
dtype=dtype,
).to(device)
for _ in range(nslices):
lora_weights_lst.append(
torch.rand(
(lora_nums, hidden_size, max_rank), # col-major
dtype=dtype,
).to(device))
# expand op needs to complete y+=a@lora_b, so output is
# initinized randomly
our_out_tensor = torch.rand((total_tokens, hidden_size * nslices),
dtype=dtype).to(device)
# Ensure the same input.
ref_out_tensor = our_out_tensor.clone()
lora_indices_tensor = torch.randint(0,
lora_nums - 1 if lora_nums > 1 else 1,
(batches, ))
indices = torch.zeros((total_tokens), dtype=torch.long).to(device)
current_offset = 0
for b_id in range(batches):
lora_index = lora_indices_tensor[b_id]
indices[current_offset:current_offset +
seq_len_tensor[b_id]] = (lora_index.item())
current_offset += seq_len_tensor[b_id].item()
lora_indices_tensor = lora_indices_tensor.to(device)
return (
inputs_tensor,
lora_weights_lst,
our_out_tensor,
ref_out_tensor,
b_seq_start_loc,
lora_indices_tensor,
seq_len_tensor,
indices,
)