701 lines
29 KiB
Python
701 lines
29 KiB
Python
from typing import TYPE_CHECKING, Optional, Union, ClassVar
|
|
from dataclasses import dataclass
|
|
import os
|
|
from packaging.version import Version
|
|
|
|
import torch
|
|
from transformers import PretrainedConfig
|
|
|
|
from vllm.logger import init_logger
|
|
from vllm.transformers_utils.config import get_config
|
|
from vllm.utils import get_cpu_memory, is_hip, is_neuron, get_nvcc_cuda_version
|
|
|
|
if TYPE_CHECKING:
|
|
from ray.util.placement_group import PlacementGroup
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
_GB = 1 << 30
|
|
|
|
|
|
class ModelConfig:
|
|
"""Configuration for the model.
|
|
|
|
Args:
|
|
model: Name or path of the huggingface model to use.
|
|
tokenizer: Name or path of the huggingface tokenizer to use.
|
|
tokenizer_mode: Tokenizer mode. "auto" will use the fast tokenizer if
|
|
available, and "slow" will always use the slow tokenizer.
|
|
trust_remote_code: Trust remote code (e.g., from HuggingFace) when
|
|
downloading the model and tokenizer.
|
|
download_dir: Directory to download and load the weights, default to the
|
|
default cache directory of huggingface.
|
|
load_format: The format of the model weights to load:
|
|
"auto" will try to load the weights in the safetensors format and
|
|
fall back to the pytorch bin format if safetensors format is
|
|
not available.
|
|
"pt" will load the weights in the pytorch bin format.
|
|
"safetensors" will load the weights in the safetensors format.
|
|
"npcache" will load the weights in pytorch format and store
|
|
a numpy cache to speed up the loading.
|
|
"dummy" will initialize the weights with random values, which is
|
|
mainly for profiling.
|
|
dtype: Data type for model weights and activations. The "auto" option
|
|
will use FP16 precision for FP32 and FP16 models, and BF16 precision
|
|
for BF16 models.
|
|
seed: Random seed for reproducibility.
|
|
revision: The specific model version to use. It can be a branch name,
|
|
a tag name, or a commit id. If unspecified, will use the default
|
|
version.
|
|
code_revision: The specific revision to use for the model code on
|
|
Hugging Face Hub. It can be a branch name, a tag name, or a
|
|
commit id. If unspecified, will use the default version.
|
|
tokenizer_revision: The specific tokenizer version to use. It can be a
|
|
branch name, a tag name, or a commit id. If unspecified, will use
|
|
the default version.
|
|
max_model_len: Maximum length of a sequence (including prompt and
|
|
output). If None, will be derived from the model.
|
|
quantization: Quantization method that was used to quantize the model
|
|
weights. If None, we assume the model weights are not quantized.
|
|
enforce_eager: Whether to enforce eager execution. If True, we will
|
|
disable CUDA graph and always execute the model in eager mode.
|
|
If False, we will use CUDA graph and eager execution in hybrid.
|
|
max_context_len_to_capture: Maximum context len covered by CUDA graphs.
|
|
When a sequence has context length larger than this, we fall back
|
|
to eager mode.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model: str,
|
|
tokenizer: str,
|
|
tokenizer_mode: str,
|
|
trust_remote_code: bool,
|
|
download_dir: Optional[str],
|
|
load_format: str,
|
|
dtype: Union[str, torch.dtype],
|
|
seed: int,
|
|
revision: Optional[str] = None,
|
|
code_revision: Optional[str] = None,
|
|
tokenizer_revision: Optional[str] = None,
|
|
max_model_len: Optional[int] = None,
|
|
quantization: Optional[str] = None,
|
|
enforce_eager: bool = False,
|
|
max_context_len_to_capture: Optional[int] = None,
|
|
max_logprobs: int = 5,
|
|
) -> None:
|
|
self.model = model
|
|
self.tokenizer = tokenizer
|
|
self.tokenizer_mode = tokenizer_mode
|
|
self.trust_remote_code = trust_remote_code
|
|
self.download_dir = download_dir
|
|
self.load_format = load_format
|
|
self.seed = seed
|
|
self.revision = revision
|
|
self.code_revision = code_revision
|
|
self.tokenizer_revision = tokenizer_revision
|
|
self.quantization = quantization
|
|
self.enforce_eager = enforce_eager
|
|
self.max_context_len_to_capture = max_context_len_to_capture
|
|
self.max_logprobs = max_logprobs
|
|
|
|
if os.environ.get("VLLM_USE_MODELSCOPE", "False").lower() == "true":
|
|
# download model from ModelScope hub,
|
|
# lazy import so that modelscope is not required for normal use.
|
|
from modelscope.hub.snapshot_download import snapshot_download # pylint: disable=C
|
|
if not os.path.exists(model):
|
|
model_path = snapshot_download(model_id=model,
|
|
cache_dir=download_dir,
|
|
revision=revision)
|
|
else:
|
|
model_path = model
|
|
self.model = model_path
|
|
self.download_dir = model_path
|
|
self.tokenizer = model_path
|
|
|
|
self.hf_config = get_config(self.model, trust_remote_code, revision,
|
|
code_revision)
|
|
self.dtype = _get_and_verify_dtype(self.hf_config, dtype)
|
|
self.max_model_len = _get_and_verify_max_len(self.hf_config,
|
|
max_model_len)
|
|
self._verify_load_format()
|
|
self._verify_tokenizer_mode()
|
|
self._verify_quantization()
|
|
self._verify_cuda_graph()
|
|
|
|
def _verify_load_format(self) -> None:
|
|
load_format = self.load_format.lower()
|
|
supported_load_format = [
|
|
"auto", "pt", "safetensors", "npcache", "dummy"
|
|
]
|
|
rocm_not_supported_load_format = []
|
|
if load_format not in supported_load_format:
|
|
raise ValueError(
|
|
f"Unknown load format: {self.load_format}. Must be one of "
|
|
"'auto', 'pt', 'safetensors', 'npcache', or 'dummy'.")
|
|
if is_hip() and load_format in rocm_not_supported_load_format:
|
|
rocm_supported_load_format = [
|
|
f for f in supported_load_format
|
|
if (f not in rocm_not_supported_load_format)
|
|
]
|
|
raise ValueError(
|
|
f"load format \'{load_format}\' is not supported in ROCm. "
|
|
f"Supported load format are "
|
|
f"{rocm_supported_load_format}")
|
|
|
|
# TODO: Remove this check once HF updates the pt weights of Mixtral.
|
|
architectures = getattr(self.hf_config, "architectures", [])
|
|
if "MixtralForCausalLM" in architectures and load_format == "pt":
|
|
raise ValueError(
|
|
"Currently, the 'pt' format is not supported for Mixtral. "
|
|
"Please use the 'safetensors' format instead. ")
|
|
self.load_format = load_format
|
|
|
|
def _verify_tokenizer_mode(self) -> None:
|
|
tokenizer_mode = self.tokenizer_mode.lower()
|
|
if tokenizer_mode not in ["auto", "slow"]:
|
|
raise ValueError(
|
|
f"Unknown tokenizer mode: {self.tokenizer_mode}. Must be "
|
|
"either 'auto' or 'slow'.")
|
|
self.tokenizer_mode = tokenizer_mode
|
|
|
|
def _verify_quantization(self) -> None:
|
|
supported_quantization = ["awq", "gptq", "squeezellm", "marlin"]
|
|
rocm_not_supported_quantization = ["awq", "marlin"]
|
|
if self.quantization is not None:
|
|
self.quantization = self.quantization.lower()
|
|
|
|
# Parse quantization method from the HF model config, if available.
|
|
hf_quant_config = getattr(self.hf_config, "quantization_config", None)
|
|
if hf_quant_config is not None:
|
|
hf_quant_method = str(hf_quant_config["quant_method"]).lower()
|
|
|
|
# If the GPTQ model is serialized in marlin format, use marlin.
|
|
if (hf_quant_method == "gptq"
|
|
and "is_marlin_format" in hf_quant_config
|
|
and hf_quant_config["is_marlin_format"]):
|
|
logger.info("The model is serialized in Marlin format. "
|
|
"Using Marlin kernel.")
|
|
hf_quant_method = "marlin"
|
|
if self.quantization == "gptq":
|
|
self.quantization = hf_quant_method
|
|
|
|
if self.quantization is None:
|
|
self.quantization = hf_quant_method
|
|
elif self.quantization != hf_quant_method:
|
|
raise ValueError(
|
|
"Quantization method specified in the model config "
|
|
f"({hf_quant_method}) does not match the quantization "
|
|
f"method specified in the `quantization` argument "
|
|
f"({self.quantization}).")
|
|
|
|
if self.quantization is not None:
|
|
if self.quantization not in supported_quantization:
|
|
raise ValueError(
|
|
f"Unknown quantization method: {self.quantization}. Must "
|
|
f"be one of {supported_quantization}.")
|
|
if is_hip(
|
|
) and self.quantization in rocm_not_supported_quantization:
|
|
raise ValueError(
|
|
f"{self.quantization} quantization is currently not "
|
|
f"supported in ROCm.")
|
|
if self.quantization != "marlin":
|
|
logger.warning(
|
|
f"{self.quantization} quantization is not fully "
|
|
"optimized yet. The speed can be slower than "
|
|
"non-quantized models.")
|
|
|
|
def _verify_cuda_graph(self) -> None:
|
|
if self.max_context_len_to_capture is None:
|
|
self.max_context_len_to_capture = self.max_model_len
|
|
self.max_context_len_to_capture = min(self.max_context_len_to_capture,
|
|
self.max_model_len)
|
|
|
|
def verify_with_parallel_config(
|
|
self,
|
|
parallel_config: "ParallelConfig",
|
|
) -> None:
|
|
total_num_attention_heads = self.hf_config.num_attention_heads
|
|
tensor_parallel_size = parallel_config.tensor_parallel_size
|
|
if total_num_attention_heads % tensor_parallel_size != 0:
|
|
raise ValueError(
|
|
f"Total number of attention heads ({total_num_attention_heads})"
|
|
" must be divisible by tensor parallel size "
|
|
f"({tensor_parallel_size}).")
|
|
|
|
total_num_hidden_layers = self.hf_config.num_hidden_layers
|
|
pipeline_parallel_size = parallel_config.pipeline_parallel_size
|
|
if total_num_hidden_layers % pipeline_parallel_size != 0:
|
|
raise ValueError(
|
|
f"Total number of hidden layers ({total_num_hidden_layers}) "
|
|
"must be divisible by pipeline parallel size "
|
|
f"({pipeline_parallel_size}).")
|
|
|
|
def get_sliding_window(self) -> Optional[int]:
|
|
return getattr(self.hf_config, "sliding_window", None)
|
|
|
|
def get_vocab_size(self) -> int:
|
|
return self.hf_config.vocab_size
|
|
|
|
def get_hidden_size(self) -> int:
|
|
return self.hf_config.hidden_size
|
|
|
|
def get_head_size(self) -> int:
|
|
if hasattr(self.hf_config, "head_dim"):
|
|
return self.hf_config.head_dim
|
|
# FIXME(woosuk): This may not be true for all models.
|
|
return self.hf_config.hidden_size // self.hf_config.num_attention_heads
|
|
|
|
def get_total_num_kv_heads(self) -> int:
|
|
"""Returns the total number of KV heads."""
|
|
# For GPTBigCode & Falcon:
|
|
# NOTE: for falcon, when new_decoder_architecture is True, the
|
|
# multi_query flag is ignored and we use n_head_kv for the number of
|
|
# KV heads.
|
|
falcon_model_types = ["falcon", "RefinedWeb", "RefinedWebModel"]
|
|
new_decoder_arch_falcon = (
|
|
self.hf_config.model_type in falcon_model_types
|
|
and getattr(self.hf_config, "new_decoder_architecture", False))
|
|
if not new_decoder_arch_falcon and getattr(self.hf_config,
|
|
"multi_query", False):
|
|
# Multi-query attention, only one KV head.
|
|
# Currently, tensor parallelism is not supported in this case.
|
|
return 1
|
|
|
|
attributes = [
|
|
# For Falcon:
|
|
"n_head_kv",
|
|
"num_kv_heads",
|
|
# For LLaMA-2:
|
|
"num_key_value_heads",
|
|
# For ChatGLM:
|
|
"multi_query_group_num",
|
|
]
|
|
for attr in attributes:
|
|
num_kv_heads = getattr(self.hf_config, attr, None)
|
|
if num_kv_heads is not None:
|
|
return num_kv_heads
|
|
|
|
# For non-grouped-query attention models, the number of KV heads is
|
|
# equal to the number of attention heads.
|
|
return self.hf_config.num_attention_heads
|
|
|
|
def get_num_kv_heads(self, parallel_config: "ParallelConfig") -> int:
|
|
"""Returns the number of KV heads per GPU."""
|
|
total_num_kv_heads = self.get_total_num_kv_heads()
|
|
# If tensor parallelism is used, we divide the number of KV heads by
|
|
# the tensor parallel size. We will replicate the KV heads in the
|
|
# case where the number of KV heads is smaller than the tensor
|
|
# parallel size so each GPU has at least one KV head.
|
|
return max(1,
|
|
total_num_kv_heads // parallel_config.tensor_parallel_size)
|
|
|
|
def get_num_layers(self, parallel_config: "ParallelConfig") -> int:
|
|
total_num_hidden_layers = self.hf_config.num_hidden_layers
|
|
return total_num_hidden_layers // parallel_config.pipeline_parallel_size
|
|
|
|
|
|
class CacheConfig:
|
|
"""Configuration for the KV cache.
|
|
|
|
Args:
|
|
block_size: Size of a cache block in number of tokens.
|
|
gpu_memory_utilization: Fraction of GPU memory to use for the
|
|
vLLM execution.
|
|
swap_space: Size of the CPU swap space per GPU (in GiB).
|
|
cache_dtype: Data type for kv cache storage.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
block_size: int,
|
|
gpu_memory_utilization: float,
|
|
swap_space: int,
|
|
cache_dtype: str,
|
|
sliding_window: Optional[int] = None,
|
|
enable_prefix_caching: bool = False,
|
|
) -> None:
|
|
self.block_size = block_size
|
|
self.gpu_memory_utilization = gpu_memory_utilization
|
|
self.swap_space_bytes = swap_space * _GB
|
|
self.cache_dtype = cache_dtype
|
|
self.sliding_window = sliding_window
|
|
self.enable_prefix_caching = enable_prefix_caching
|
|
self._verify_args()
|
|
self._verify_cache_dtype()
|
|
|
|
# Will be set after profiling.
|
|
self.num_gpu_blocks = None
|
|
self.num_cpu_blocks = None
|
|
|
|
def metrics_info(self):
|
|
# convert cache_config to dict(key: str, value: str) for prometheus
|
|
# metrics info
|
|
return {key: str(value) for key, value in self.__dict__.items()}
|
|
|
|
def _verify_args(self) -> None:
|
|
if self.gpu_memory_utilization > 1.0:
|
|
raise ValueError(
|
|
"GPU memory utilization must be less than 1.0. Got "
|
|
f"{self.gpu_memory_utilization}.")
|
|
|
|
def _verify_cache_dtype(self) -> None:
|
|
if self.cache_dtype == "auto":
|
|
pass
|
|
elif self.cache_dtype == "fp8_e5m2":
|
|
if is_hip():
|
|
raise NotImplementedError(
|
|
"FP8_E5M2 KV Cache on AMD GPU has not been supported yet.")
|
|
nvcc_cuda_version = get_nvcc_cuda_version()
|
|
if nvcc_cuda_version and nvcc_cuda_version < Version("11.8"):
|
|
raise ValueError(
|
|
"FP8 is not supported when cuda version is lower than 11.8."
|
|
)
|
|
logger.info(
|
|
"Using fp8_e5m2 data type to store kv cache. It reduces "
|
|
"the GPU memory footprint and boosts the performance. "
|
|
"But it may cause slight accuracy drop. "
|
|
"Currently we only support fp8 without scaling factors and "
|
|
"make e5m2 as a default format.")
|
|
else:
|
|
raise ValueError(f"Unknown kv cache dtype: {self.cache_dtype}")
|
|
|
|
def verify_with_parallel_config(
|
|
self,
|
|
parallel_config: "ParallelConfig",
|
|
) -> None:
|
|
total_cpu_memory = get_cpu_memory()
|
|
# FIXME(woosuk): Here, it is assumed that the GPUs in a tensor parallel
|
|
# group are in the same node. However, the GPUs may span multiple nodes.
|
|
num_gpus_per_node = parallel_config.tensor_parallel_size
|
|
cpu_memory_usage = self.swap_space_bytes * num_gpus_per_node
|
|
|
|
msg = (f"{cpu_memory_usage / _GB:.2f} GiB out of "
|
|
f"the {total_cpu_memory / _GB:.2f} GiB total CPU memory is "
|
|
"allocated for the swap space.")
|
|
if cpu_memory_usage > 0.7 * total_cpu_memory:
|
|
raise ValueError("Too large swap space. " + msg)
|
|
elif cpu_memory_usage > 0.4 * total_cpu_memory:
|
|
logger.warning("Possibly too large swap space. " + msg)
|
|
|
|
|
|
class ParallelConfig:
|
|
"""Configuration for the distributed execution.
|
|
|
|
Args:
|
|
pipeline_parallel_size: Number of pipeline parallel groups.
|
|
tensor_parallel_size: Number of tensor parallel groups.
|
|
worker_use_ray: Whether to use Ray for model workers. Will be set to
|
|
True if either pipeline_parallel_size or tensor_parallel_size is
|
|
greater than 1.
|
|
max_parallel_loading_workers: Maximum number of multiple batches
|
|
when load model sequentially. To avoid RAM OOM when using tensor
|
|
parallel and large models.
|
|
disable_custom_all_reduce: Disable the custom all-reduce kernel and
|
|
fall back to NCCL.
|
|
ray_workers_use_nsight: Whether to profile Ray workers with nsight, see
|
|
https://docs.ray.io/en/latest/ray-observability/user-guides/profiling.html#profiling-nsight-profiler.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
pipeline_parallel_size: int,
|
|
tensor_parallel_size: int,
|
|
worker_use_ray: bool,
|
|
max_parallel_loading_workers: Optional[int] = None,
|
|
disable_custom_all_reduce: bool = False,
|
|
ray_workers_use_nsight: bool = False,
|
|
placement_group: Optional["PlacementGroup"] = None,
|
|
) -> None:
|
|
self.pipeline_parallel_size = pipeline_parallel_size
|
|
if is_neuron():
|
|
# For Neuron device support, here we assign TP=1 to avoid sharding
|
|
# within vLLM directly. Transformer-neuronx would take
|
|
# neuron_tp_degree attribute, and distribute the workload
|
|
# to multiple NeuronCores.
|
|
self.tensor_parallel_size = 1
|
|
self.neuron_tp_degree = tensor_parallel_size
|
|
else:
|
|
self.tensor_parallel_size = tensor_parallel_size
|
|
self.worker_use_ray = worker_use_ray
|
|
self.max_parallel_loading_workers = max_parallel_loading_workers
|
|
self.disable_custom_all_reduce = disable_custom_all_reduce
|
|
self.ray_workers_use_nsight = ray_workers_use_nsight
|
|
self.placement_group = placement_group
|
|
|
|
self.world_size = pipeline_parallel_size * self.tensor_parallel_size
|
|
# Ray worker is not supported for Neuron backend.
|
|
if self.world_size > 1 and not is_neuron():
|
|
self.worker_use_ray = True
|
|
self._verify_args()
|
|
|
|
def _verify_args(self) -> None:
|
|
if self.pipeline_parallel_size > 1:
|
|
raise NotImplementedError(
|
|
"Pipeline parallelism is not supported yet.")
|
|
if not self.disable_custom_all_reduce and self.world_size > 1:
|
|
if is_hip():
|
|
self.disable_custom_all_reduce = True
|
|
logger.info(
|
|
"Disabled the custom all-reduce kernel because it is not "
|
|
"supported on AMD GPUs.")
|
|
elif self.pipeline_parallel_size > 1:
|
|
self.disable_custom_all_reduce = True
|
|
logger.info(
|
|
"Disabled the custom all-reduce kernel because it is not "
|
|
"supported with pipeline parallelism.")
|
|
if self.ray_workers_use_nsight and not self.worker_use_ray:
|
|
raise ValueError("Unable to use nsight profiling unless workers "
|
|
"run with Ray.")
|
|
|
|
# FIXME(woosuk): Fix the stability issues and re-enable the custom
|
|
# all-reduce kernel.
|
|
if not self.disable_custom_all_reduce and self.world_size > 1:
|
|
self.disable_custom_all_reduce = True
|
|
logger.info(
|
|
"Custom all-reduce kernels are temporarily disabled due to "
|
|
"stability issues. We will re-enable them once the issues are "
|
|
"resolved.")
|
|
|
|
|
|
class SchedulerConfig:
|
|
"""Scheduler configuration.
|
|
|
|
Args:
|
|
max_num_batched_tokens: Maximum number of tokens to be processed in
|
|
a single iteration.
|
|
max_num_seqs: Maximum number of sequences to be processed in a single
|
|
iteration.
|
|
max_model_len: Maximum length of a sequence (including prompt
|
|
and generated text).
|
|
max_paddings: Maximum number of paddings to be added to a batch.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
max_num_batched_tokens: Optional[int],
|
|
max_num_seqs: int,
|
|
max_model_len: int,
|
|
max_paddings: int,
|
|
) -> None:
|
|
if max_num_batched_tokens is not None:
|
|
self.max_num_batched_tokens = max_num_batched_tokens
|
|
else:
|
|
# If max_model_len is too short, use 2048 as the default value for
|
|
# higher throughput.
|
|
self.max_num_batched_tokens = max(max_model_len, 2048)
|
|
self.max_num_seqs = max_num_seqs
|
|
self.max_model_len = max_model_len
|
|
self.max_paddings = max_paddings
|
|
self._verify_args()
|
|
|
|
def _verify_args(self) -> None:
|
|
if self.max_num_batched_tokens < self.max_model_len:
|
|
raise ValueError(
|
|
f"max_num_batched_tokens ({self.max_num_batched_tokens}) is "
|
|
f"smaller than max_model_len ({self.max_model_len}). "
|
|
"This effectively limits the maximum sequence length to "
|
|
"max_num_batched_tokens and makes vLLM reject longer "
|
|
"sequences. Please increase max_num_batched_tokens or "
|
|
"decrease max_model_len.")
|
|
if self.max_num_batched_tokens < self.max_num_seqs:
|
|
raise ValueError(
|
|
f"max_num_batched_tokens ({self.max_num_batched_tokens}) must "
|
|
"be greater than or equal to max_num_seqs "
|
|
f"({self.max_num_seqs}).")
|
|
|
|
|
|
class DeviceConfig:
|
|
|
|
def __init__(self, device: str = "auto") -> None:
|
|
if device == "auto":
|
|
# Automated device type detection
|
|
if torch.cuda.is_available():
|
|
self.device_type = "cuda"
|
|
elif is_neuron():
|
|
self.device_type = "neuron"
|
|
else:
|
|
raise RuntimeError("No supported device detected.")
|
|
else:
|
|
# Device type is assigned explicitly
|
|
self.device_type = device
|
|
|
|
# Some device types require processing inputs on CPU
|
|
if self.device_type in ["neuron"]:
|
|
self.device = torch.device("cpu")
|
|
else:
|
|
# Set device with device type
|
|
self.device = torch.device(self.device_type)
|
|
|
|
@property
|
|
def is_neuron(self):
|
|
return self.device_type == "neuron"
|
|
|
|
|
|
@dataclass
|
|
class LoRAConfig:
|
|
max_lora_rank: int
|
|
max_loras: int
|
|
max_cpu_loras: Optional[int] = None
|
|
lora_dtype: Optional[torch.dtype] = None
|
|
lora_extra_vocab_size: int = 256
|
|
# This is a constant.
|
|
lora_vocab_padding_size: ClassVar[int] = 256
|
|
|
|
def __post_init__(self):
|
|
# Keep this in sync with csrc/punica/bgmv/bgmv_config.h
|
|
possible_max_ranks = (8, 16, 32, 64)
|
|
possible_lora_extra_vocab_size = (0, 256, 512)
|
|
if self.max_lora_rank not in possible_max_ranks:
|
|
raise ValueError(
|
|
f"max_lora_rank ({self.max_lora_rank}) must be one of "
|
|
f"{possible_max_ranks}.")
|
|
if self.lora_extra_vocab_size not in possible_lora_extra_vocab_size:
|
|
raise ValueError(
|
|
f"lora_extra_vocab_size ({self.lora_extra_vocab_size}) "
|
|
f"must be one of {possible_lora_extra_vocab_size}.")
|
|
if self.max_loras < 1:
|
|
raise ValueError(f"max_loras ({self.max_loras}) must be >= 1.")
|
|
if self.max_cpu_loras is None:
|
|
self.max_cpu_loras = self.max_loras
|
|
elif self.max_cpu_loras < self.max_loras:
|
|
raise ValueError(
|
|
f"max_cpu_loras ({self.max_cpu_loras}) must be >= "
|
|
f"max_loras ({self.max_loras})")
|
|
|
|
def verify_with_model_config(self, model_config: ModelConfig):
|
|
if self.lora_dtype in (None, "auto"):
|
|
self.lora_dtype = model_config.dtype
|
|
elif isinstance(self.lora_dtype, str):
|
|
self.lora_dtype = getattr(torch, self.lora_dtype)
|
|
if model_config.quantization is not None:
|
|
raise ValueError(
|
|
"LoRA is not supported with quantized models yet.")
|
|
|
|
def verify_with_scheduler_config(self, scheduler_config: SchedulerConfig):
|
|
if scheduler_config.max_num_batched_tokens > 65528:
|
|
raise ValueError(
|
|
"Due to limitations of the custom LoRA CUDA kernel, "
|
|
"max_num_batched_tokens must be <= 65528 when "
|
|
"LoRA is enabled.")
|
|
|
|
|
|
_STR_DTYPE_TO_TORCH_DTYPE = {
|
|
"half": torch.float16,
|
|
"float16": torch.float16,
|
|
"float": torch.float32,
|
|
"float32": torch.float32,
|
|
"bfloat16": torch.bfloat16,
|
|
}
|
|
|
|
_ROCM_NOT_SUPPORTED_DTYPE = ["float", "float32"]
|
|
|
|
|
|
def _get_and_verify_dtype(
|
|
config: PretrainedConfig,
|
|
dtype: Union[str, torch.dtype],
|
|
) -> torch.dtype:
|
|
# NOTE: getattr(config, "torch_dtype", torch.float32) is not correct
|
|
# because config.torch_dtype can be None.
|
|
config_dtype = getattr(config, "torch_dtype", None)
|
|
if config_dtype is None:
|
|
config_dtype = torch.float32
|
|
|
|
if isinstance(dtype, str):
|
|
dtype = dtype.lower()
|
|
if dtype == "auto":
|
|
if config_dtype == torch.float32:
|
|
# Following the common practice, we use float16 for float32
|
|
# models.
|
|
torch_dtype = torch.float16
|
|
else:
|
|
torch_dtype = config_dtype
|
|
else:
|
|
if dtype not in _STR_DTYPE_TO_TORCH_DTYPE:
|
|
raise ValueError(f"Unknown dtype: {dtype}")
|
|
torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype]
|
|
elif isinstance(dtype, torch.dtype):
|
|
torch_dtype = dtype
|
|
else:
|
|
raise ValueError(f"Unknown dtype: {dtype}")
|
|
|
|
if is_hip() and torch_dtype == torch.float32:
|
|
rocm_supported_dtypes = [
|
|
k for k, v in _STR_DTYPE_TO_TORCH_DTYPE.items()
|
|
if (k not in _ROCM_NOT_SUPPORTED_DTYPE)
|
|
]
|
|
raise ValueError(f"dtype \'{dtype}\' is not supported in ROCm. "
|
|
f"Supported dtypes are {rocm_supported_dtypes}")
|
|
|
|
# Verify the dtype.
|
|
if torch_dtype != config_dtype:
|
|
if torch_dtype == torch.float32:
|
|
# Upcasting to float32 is allowed.
|
|
pass
|
|
elif config_dtype == torch.float32:
|
|
# Downcasting from float32 to float16 or bfloat16 is allowed.
|
|
pass
|
|
else:
|
|
# Casting between float16 and bfloat16 is allowed with a warning.
|
|
logger.warning(f"Casting {config_dtype} to {torch_dtype}.")
|
|
|
|
return torch_dtype
|
|
|
|
|
|
def _get_and_verify_max_len(
|
|
hf_config: PretrainedConfig,
|
|
max_model_len: Optional[int],
|
|
) -> int:
|
|
"""Get and verify the model's maximum length."""
|
|
derived_max_model_len = float("inf")
|
|
possible_keys = [
|
|
# OPT
|
|
"max_position_embeddings",
|
|
# GPT-2
|
|
"n_positions",
|
|
# MPT
|
|
"max_seq_len",
|
|
# ChatGLM2
|
|
"seq_length",
|
|
# Others
|
|
"max_sequence_length",
|
|
"max_seq_length",
|
|
"seq_len",
|
|
]
|
|
for key in possible_keys:
|
|
max_len_key = getattr(hf_config, key, None)
|
|
if max_len_key is not None:
|
|
derived_max_model_len = min(derived_max_model_len, max_len_key)
|
|
if derived_max_model_len == float("inf"):
|
|
if max_model_len is not None:
|
|
# If max_model_len is specified, we use it.
|
|
return max_model_len
|
|
|
|
default_max_len = 2048
|
|
logger.warning(
|
|
"The model's config.json does not contain any of the following "
|
|
"keys to determine the original maximum length of the model: "
|
|
f"{possible_keys}. Assuming the model's maximum length is "
|
|
f"{default_max_len}.")
|
|
derived_max_model_len = default_max_len
|
|
|
|
rope_scaling = getattr(hf_config, "rope_scaling", None)
|
|
if rope_scaling is not None:
|
|
assert "factor" in rope_scaling
|
|
scaling_factor = rope_scaling["factor"]
|
|
if rope_scaling["type"] == "yarn":
|
|
derived_max_model_len = rope_scaling[
|
|
"original_max_position_embeddings"]
|
|
derived_max_model_len *= scaling_factor
|
|
|
|
if max_model_len is None:
|
|
max_model_len = derived_max_model_len
|
|
elif max_model_len > derived_max_model_len:
|
|
raise ValueError(
|
|
f"User-specified max_model_len ({max_model_len}) is greater than "
|
|
f"the derived max_model_len ({max_len_key}={derived_max_model_len}"
|
|
" in model's config.json). This may lead to incorrect model "
|
|
"outputs or CUDA errors. Make sure the value is correct and "
|
|
"within the model context size.")
|
|
return int(max_model_len)
|