vllm/tests/quantization/test_compressed_tensors.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

349 lines
14 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""Test model set-up and weight loading for llmcompressor-quantized models.
Run `pytest tests/quantization/test_compressed_tensors.py`.
"""
from typing import Optional
import pytest
import torch
from compressed_tensors.quantization import QuantizationType
from tests.models.utils import check_logprobs_close
from vllm.model_executor.layers.quantization.compressed_tensors.compressed_tensors import ( # noqa: E501
CompressedTensors24, CompressedTensorsLinearMethod,
CompressedTensorsW4A16Sparse24, CompressedTensorsW8A8Fp8,
CompressedTensorsW8A8Int8, CompressedTensorsW8A16Fp8,
CompressedTensorsWNA16)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
sparse_cutlass_supported)
from vllm.platforms import current_platform
@pytest.mark.parametrize(
"model_args",
[("nm-testing/tinyllama-oneshot-w8w8-test-static-shape-change", "tensor",
QuantizationType.INT, 2560, True),
("nm-testing/tinyllama-oneshot-w8-channel-a8-tensor", "channel",
QuantizationType.INT, 2560, True),
("nm-testing/asym-w8w8-int8-static-per-tensor-tiny-llama", "tensor",
QuantizationType.INT, 2560, False)])
def test_compressed_tensors_w8a8_static_setup(vllm_runner, model_args):
model_path, strategy, quant_type, shape_0, is_symmetric = model_args
with vllm_runner(model_path, enforce_eager=True) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
o_proj = layer.self_attn.o_proj
gate_up_proj = layer.mlp.gate_up_proj
down_proj = layer.mlp.down_proj
# assert zp for symmetric and asymmetric cases
def zp_valid(zp: Optional[torch.Tensor]):
if is_symmetric:
return zp is None
return zp is not None and zp.dtype is torch.int32
assert zp_valid(qkv_proj.input_zero_point)
assert zp_valid(o_proj.input_zero_point)
assert zp_valid(gate_up_proj.input_zero_point)
assert zp_valid(down_proj.input_zero_point)
assert isinstance(qkv_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(o_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(gate_up_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(down_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(qkv_proj.scheme, CompressedTensorsW8A8Int8)
assert qkv_proj.scheme.strategy == strategy
assert qkv_proj.scheme.is_static_input_scheme
expected_type = torch.int8
assert qkv_proj.weight.dtype is expected_type
assert o_proj.weight.dtype is expected_type
assert gate_up_proj.weight.dtype is expected_type
if qkv_proj.scheme.strategy == "tensor":
# Make sure it is a channelwise buffer
# After running process_weights_after_loading
assert len(qkv_proj.weight_scale.shape) == 2
assert qkv_proj.weight_scale.shape[0] == shape_0
assert qkv_proj.weight_scale.shape[1] == 1
assert qkv_proj.weight_scale.dtype is torch.float32
assert qkv_proj.input_scale.dtype is torch.float32
llm.apply_model(check_model)
output = llm.generate_greedy(["Hello my name is"], max_tokens=20)
assert output
@pytest.mark.parametrize("model_path", [
"neuralmagic/Llama-3.2-1B-quantized.w8a8",
"nm-testing/Meta-Llama-3-8B-Instruct-W8A8-Dynamic-Asym",
"nm-testing/Meta-Llama-3-8B-Instruct-W8A8-Static-Per-Tensor-Sym",
"nm-testing/Meta-Llama-3-8B-Instruct-W8A8-Static-Per-Tensor-Asym"
])
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("num_logprobs", [10])
def test_compressed_tensors_w8a8_logprobs(hf_runner, vllm_runner,
example_prompts, model_path,
max_tokens, num_logprobs):
dtype = "bfloat16"
# skip language translation prompt for the static per tensor asym model
if model_path == "nm-testing/Meta-Llama-3-8B-Instruct-W8A8-Static-Per-Tensor-Asym": # noqa: E501
example_prompts = example_prompts[0:-1]
with hf_runner(model_path, dtype=dtype) as hf_model:
hf_outputs = hf_model.generate_greedy_logprobs_limit(
example_prompts, max_tokens, num_logprobs)
with vllm_runner(model_path, dtype=dtype) as vllm_model:
vllm_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
def test_compressed_tensors_no_enforce_eager(vllm_runner):
model_path = "nm-testing/tinyllama-oneshot-w8w8-test-static-shape-change"
with vllm_runner(model_path) as llm:
output = llm.generate_greedy("Hello my name is", max_tokens=20)
assert output
@pytest.mark.parametrize("model_args", [
("nm-testing/tinyllama-oneshot-w8a8-dynamic-token-v2", "tensor"),
("nm-testing/tinyllama-oneshot-w8a8-dynamic-token-v2-asym", "tensor"),
("nm-testing/tinyllama-oneshot-w8a8-channel-dynamic-token-v2", "channel"),
("nm-testing/tinyllama-oneshot-w8a8-channel-dynamic-token-v2-asym",
"channel"),
])
def test_compressed_tensors_w8a8_dynamic_per_token(vllm_runner, model_args):
model_path, strategy = model_args
with vllm_runner(model_path, dtype=torch.float16) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert isinstance(qkv_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(qkv_proj.scheme, CompressedTensorsW8A8Int8)
assert not qkv_proj.scheme.is_static_input_scheme
assert qkv_proj.scheme.strategy == strategy
assert qkv_proj.weight.dtype is torch.int8
llm.apply_model(check_model)
output = llm.generate_greedy(["Hello my name is"], max_tokens=20)
assert output
@pytest.mark.parametrize(
"wNa16_args",
[("nm-testing/tinyllama-oneshot-w4a16-channel-v2", "channel", None, 8),
("nm-testing/tinyllama-oneshot-w4a16-group128-v2", "group", 128, 8),
("nm-testing/tinyllama-oneshot-w8a16-per-channel", "channel", None, 4)])
def test_compressed_tensors_wNa16(vllm_runner, wNa16_args):
model, strategy, group, pack_factor = wNa16_args
with vllm_runner(model) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert isinstance(qkv_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(qkv_proj.scheme, CompressedTensorsWNA16)
assert qkv_proj.scheme.strategy == strategy
assert qkv_proj.scheme.group_size == (-1
if group is None else group)
assert qkv_proj.weight_packed.dtype is torch.int32
assert qkv_proj.weight_scale.dtype is torch.float16
assert qkv_proj.scheme.pack_factor == pack_factor
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=20)
assert output
def test_compressed_tensors_w4a16_marlin24(vllm_runner):
model_path = "nm-testing/llama7b-one-shot-2_4-w4a16-marlin24-t"
with vllm_runner(model_path) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert isinstance(qkv_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(qkv_proj.scheme, CompressedTensorsW4A16Sparse24)
assert qkv_proj.weight_packed.dtype is torch.int32
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=20)
assert output
def test_compressed_tensors_fp8(vllm_runner):
model_path = "nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test"
with vllm_runner(model_path) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert isinstance(qkv_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(
qkv_proj.scheme,
(CompressedTensorsW8A8Fp8, CompressedTensorsW8A16Fp8))
assert qkv_proj.input_scale.dtype is torch.float32
if isinstance(qkv_proj.scheme, CompressedTensorsW8A8Fp8):
assert len(qkv_proj.input_scale.shape) == 0
assert qkv_proj.weight.dtype is torch.float8_e4m3fn
assert qkv_proj.weight_scale.dtype is torch.float32
assert len(qkv_proj.weight_scale.shape) == 0
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=20)
assert output
def test_compressed_tensors_kv_cache(vllm_runner):
model_path = "nm-testing/TinyLlama-1.1B-compressed-tensors-kv-cache-scheme"
with vllm_runner(model_path, kv_cache_dtype="fp8") as llm:
output = llm.generate_greedy("Hello world!", max_tokens=20)
assert output
@pytest.mark.skipif(not sparse_cutlass_supported(),
reason="Sparse FP8 is not yet supported on this GPU type.")
def _test_2of4_quant_models(qkv_proj, weight_strategy, input_strategy):
assert isinstance(qkv_proj.quant_method, CompressedTensorsLinearMethod)
assert isinstance(qkv_proj.scheme, CompressedTensors24)
assert qkv_proj.scheme.weight_quant.strategy == weight_strategy
assert qkv_proj.scheme.input_quant.strategy == input_strategy
assert qkv_proj.scheme.quantized
assert qkv_proj.quant_method.quantization_config.sparsity_scheme_map
sparsity_map = qkv_proj.quant_method.quantization_config.sparsity_scheme_map # noqa: E501
assert sparsity_map.get("Linear").format == "dense"
assert sparsity_map.get("Linear").sparsity_structure == "2:4"
@pytest.mark.skipif(not current_platform.has_device_capability(90),
reason="Sparse FP8 is not yet supported on this GPU type.")
@pytest.mark.parametrize("args_2of4", [
("nm-testing/Meta-Llama-3-8B-Instruct-FP8-Dynamic-2of4-testing", "channel",
"token"),
("nm-testing/Meta-Llama-3-8B-Instruct-FP8-Static-Per-Tensor-testing",
"channel", "tensor"),
("nm-testing/Meta-Llama-3-8B-Instruct-FP8-Static-testing", "tensor",
"tensor"),
("nm-testing/Meta-Llama-3-8B-Instruct-FP8-Dynamic-IA-Per-Tensor-Weight-testing",
"tensor", "token"),
])
def test_compressed_tensors_2of4_quant_fp8(vllm_runner, args_2of4):
model, weight_strategy, input_strategy = args_2of4
with vllm_runner(model) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert qkv_proj.scheme.weights_dtype == torch.float8_e4m3fn
_test_2of4_quant_models(qkv_proj, weight_strategy, input_strategy)
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=20)
print(output)
assert output
@pytest.mark.skipif(not sparse_cutlass_supported(),
reason="Sparse FP8 is not yet supported on this GPU type.")
@pytest.mark.parametrize("args_2of4", [
("nm-testing/TinyLlama-1.1B-Chat-v1.0-INT8-Dynamic-IA-Per-Channel-Weight-testing",
"channel", "token"),
("nm-testing/TinyLlama-1.1B-Chat-v1.0-INT8-Static-testing", "tensor",
"tensor"),
("nm-testing/TinyLlama-1.1B-Chat-v1.0-INT8-Dynamic-IA-Per-Tensor-Weight-testing",
"tensor", "token"),
])
def test_compressed_tensors_2of4_quant_int8(vllm_runner, args_2of4):
model, weight_strategy, input_strategy = args_2of4
with vllm_runner(model) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert qkv_proj.scheme.weights_dtype == torch.int8
_test_2of4_quant_models(qkv_proj, weight_strategy, input_strategy)
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=20)
print(output)
assert output
@pytest.mark.skip(reason="2of4 sparse w16a16 CUTLASS produces bad output.")
@pytest.mark.skipif(
not sparse_cutlass_supported(),
reason="2of4 Sparse is not yet supported on this GPU type.")
@pytest.mark.parametrize(
"args_2of4",
[("nm-testing/TinyLlama-1.1B-Chat-v1.0-2of4-Sparse-Dense-Compressor")])
def test_compressed_tensors_2of4_sparse(vllm_runner, args_2of4):
model = args_2of4
with vllm_runner(model) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert isinstance(qkv_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(qkv_proj.scheme, CompressedTensors24)
assert qkv_proj.scheme.weight_quant is None
assert qkv_proj.scheme.input_quant is None
assert not qkv_proj.scheme.quantized
assert qkv_proj.quant_method.quantization_config.sparsity_scheme_map
sparsity_map = qkv_proj.quant_method.quantization_config.sparsity_scheme_map # noqa: E501
assert sparsity_map.get("Linear").format == "dense"
assert sparsity_map.get("Linear").sparsity_structure == "2:4"
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=20)
print(output)
assert output