
how to serve the loras (mimicking the [multilora inference example](https://github.com/vllm-project/vllm/blob/main/examples/multilora_inference.py)): ```terminal $ export LORA_PATH=~/.cache/huggingface/hub/models--yard1--llama-2-7b-sql-lora-test/ $ python -m vllm.entrypoints.api_server \ --model meta-llama/Llama-2-7b-hf \ --enable-lora \ --lora-modules sql-lora=$LORA_PATH sql-lora2=$LORA_PATH ``` the above server will list 3 separate values if the user queries `/models`: one for the base served model, and one each for the specified lora modules. in this case sql-lora and sql-lora2 point to the same underlying lora, but this need not be the case. lora config values take the same values they do in EngineArgs no work has been done here to scope client permissions to specific models
120 lines
5.4 KiB
Python
120 lines
5.4 KiB
Python
"""
|
|
This example shows how to use the multi-LoRA functionality for offline inference.
|
|
|
|
Requires HuggingFace credentials for access to Llama2.
|
|
"""
|
|
|
|
from typing import Optional, List, Tuple
|
|
|
|
from huggingface_hub import snapshot_download
|
|
|
|
from vllm import EngineArgs, LLMEngine, SamplingParams, RequestOutput
|
|
from vllm.lora.request import LoRARequest
|
|
|
|
|
|
def create_test_prompts(
|
|
lora_path: str
|
|
) -> List[Tuple[str, SamplingParams, Optional[LoRARequest]]]:
|
|
"""Create a list of test prompts with their sampling parameters.
|
|
|
|
2 requests for base model, 4 requests for the LoRA. We define 2
|
|
different LoRA adapters (using the same model for demo purposes).
|
|
Since we also set `max_loras=1`, the expectation is that the requests
|
|
with the second LoRA adapter will be ran after all requests with the
|
|
first adapter have finished.
|
|
"""
|
|
return [
|
|
("A robot may not injure a human being",
|
|
SamplingParams(temperature=0.0,
|
|
logprobs=1,
|
|
prompt_logprobs=1,
|
|
max_tokens=128), None),
|
|
("To be or not to be,",
|
|
SamplingParams(temperature=0.8,
|
|
top_k=5,
|
|
presence_penalty=0.2,
|
|
max_tokens=128), None),
|
|
("[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]",
|
|
SamplingParams(temperature=0.0,
|
|
logprobs=1,
|
|
prompt_logprobs=1,
|
|
max_tokens=128,
|
|
stop_token_ids=[32003]),
|
|
LoRARequest("sql-lora", 1, lora_path)),
|
|
("[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]",
|
|
SamplingParams(n=3,
|
|
best_of=3,
|
|
use_beam_search=True,
|
|
temperature=0,
|
|
max_tokens=128,
|
|
stop_token_ids=[32003]),
|
|
LoRARequest("sql-lora", 1, lora_path)),
|
|
("[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]",
|
|
SamplingParams(temperature=0.0,
|
|
logprobs=1,
|
|
prompt_logprobs=1,
|
|
max_tokens=128,
|
|
stop_token_ids=[32003]),
|
|
LoRARequest("sql-lora2", 2, lora_path)),
|
|
("[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]",
|
|
SamplingParams(n=3,
|
|
best_of=3,
|
|
use_beam_search=True,
|
|
temperature=0,
|
|
max_tokens=128,
|
|
stop_token_ids=[32003]),
|
|
LoRARequest("sql-lora", 1, lora_path)),
|
|
]
|
|
|
|
|
|
def process_requests(engine: LLMEngine,
|
|
test_prompts: List[Tuple[str, SamplingParams,
|
|
Optional[LoRARequest]]]):
|
|
"""Continuously process a list of prompts and handle the outputs."""
|
|
request_id = 0
|
|
|
|
while test_prompts or engine.has_unfinished_requests():
|
|
if test_prompts:
|
|
prompt, sampling_params, lora_request = test_prompts.pop(0)
|
|
engine.add_request(str(request_id),
|
|
prompt,
|
|
sampling_params,
|
|
lora_request=lora_request)
|
|
request_id += 1
|
|
|
|
request_outputs: List[RequestOutput] = engine.step()
|
|
|
|
for request_output in request_outputs:
|
|
if request_output.finished:
|
|
print(request_output)
|
|
|
|
|
|
def initialize_engine() -> LLMEngine:
|
|
"""Initialize the LLMEngine."""
|
|
# max_loras: controls the number of LoRAs that can be used in the same
|
|
# batch. Larger numbers will cause higher memory usage, as each LoRA
|
|
# slot requires its own preallocated tensor.
|
|
# max_lora_rank: controls the maximum supported rank of all LoRAs. Larger
|
|
# numbers will cause higher memory usage. If you know that all LoRAs will
|
|
# use the same rank, it is recommended to set this as low as possible.
|
|
# max_cpu_loras: controls the size of the CPU LoRA cache.
|
|
engine_args = EngineArgs(model="meta-llama/Llama-2-7b-hf",
|
|
enable_lora=True,
|
|
max_loras=1,
|
|
max_lora_rank=8,
|
|
max_cpu_loras=2,
|
|
max_num_seqs=256)
|
|
return LLMEngine.from_engine_args(engine_args)
|
|
|
|
|
|
def main():
|
|
"""Main function that sets up and runs the prompt processing."""
|
|
engine = initialize_engine()
|
|
lora_path = snapshot_download(repo_id="yard1/llama-2-7b-sql-lora-test")
|
|
test_prompts = create_test_prompts(lora_path)
|
|
process_requests(engine, test_prompts)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|