419 lines
16 KiB
Python
419 lines
16 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# Adapted from
|
|
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/olmo2/modeling_olmo2.py
|
|
# Copyright 2024 The vLLM team.
|
|
# Copyright 2024 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only OLMo2 model compatible with HuggingFace weights."""
|
|
|
|
from functools import partial
|
|
from typing import Iterable, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from vllm.attention import Attention
|
|
from vllm.config import VllmConfig
|
|
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
|
from vllm.distributed.communication_op import tensor_model_parallel_all_gather
|
|
from vllm.distributed.parallel_state import get_tensor_model_parallel_rank
|
|
from vllm.distributed.utils import split_tensor_along_last_dim
|
|
from vllm.model_executor.layers.activation import SiluAndMul
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead, VocabParallelEmbedding)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.models.interfaces import SupportsPP
|
|
from vllm.model_executor.models.utils import (
|
|
is_pp_missing_parameter, make_empty_intermediate_tensors_factory,
|
|
make_layers, maybe_prefix)
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.transformers_utils.configs.olmo2 import Olmo2Config
|
|
|
|
|
|
class Olmo2Attention(nn.Module):
|
|
"""
|
|
This is the attention block where the output is computed as
|
|
``Attention(LN(x))`` in ``MLP(LN(x + Attention(LN(x))))``
|
|
(plus another skip connection).
|
|
"""
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
self.config = vllm_config.model_config.hf_config
|
|
assert isinstance(self.config, Olmo2Config)
|
|
|
|
hidden_size = self.config.hidden_size
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = self.config.num_attention_heads
|
|
|
|
assert hidden_size % self.total_num_heads == 0
|
|
assert self.total_num_heads % self.tp_size == 0
|
|
|
|
self.num_heads = self.total_num_heads // self.tp_size
|
|
self.total_num_kv_heads = (self.config.num_key_value_heads
|
|
or self.total_num_heads)
|
|
if self.total_num_kv_heads >= self.tp_size:
|
|
assert self.total_num_kv_heads % self.tp_size == 0
|
|
else:
|
|
assert self.tp_size % self.total_num_kv_heads == 0
|
|
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // self.tp_size)
|
|
self.head_dim = hidden_size // self.total_num_heads
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.max_position_embeddings = self.config.max_position_embeddings
|
|
self.rope_theta = self.config.rope_theta
|
|
|
|
# Attention input projection. Projects x -> (q, k, v)
|
|
self.qkv_proj = QKVParallelLinear(
|
|
hidden_size,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
self.total_num_kv_heads,
|
|
bias=False,
|
|
quant_config=vllm_config.quant_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
)
|
|
|
|
self.tp_rank = get_tensor_model_parallel_rank()
|
|
self.k_norm = RMSNorm(
|
|
self.total_num_kv_heads * self.head_dim,
|
|
eps=self.config.rms_norm_eps,
|
|
)
|
|
self.q_norm = RMSNorm(self.config.hidden_size,
|
|
eps=self.config.rms_norm_eps)
|
|
|
|
# Rotary embeddings.
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=self.max_position_embeddings,
|
|
base=self.rope_theta, # type: ignore
|
|
)
|
|
self.scaling = self.head_dim**-0.5
|
|
self.attn = Attention(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
cache_config=vllm_config.cache_config,
|
|
quant_config=vllm_config.quant_config,
|
|
prefix=prefix,
|
|
)
|
|
|
|
# Attention output projection.
|
|
self.o_proj = RowParallelLinear(
|
|
self.total_num_heads * self.head_dim,
|
|
hidden_size,
|
|
bias=False,
|
|
quant_config=vllm_config.quant_config,
|
|
prefix=f"{prefix}.o_proj",
|
|
)
|
|
|
|
def _apply_qk_norm(self, q: torch.Tensor,
|
|
k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
if self.tp_size > 1:
|
|
q = tensor_model_parallel_all_gather(q.contiguous())
|
|
k = tensor_model_parallel_all_gather(k.contiguous())
|
|
q = self.q_norm.forward_native(q)
|
|
k = self.k_norm.forward_native(k)
|
|
if self.tp_size > 1:
|
|
splitter = partial(split_tensor_along_last_dim,
|
|
num_partitions=self.tp_size)
|
|
q = splitter(q)[self.tp_rank]
|
|
k = splitter(k)[self.tp_rank]
|
|
return q, k
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
q, k = self._apply_qk_norm(q, k)
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
attn_output = self.attn(q, k, v)
|
|
output, _ = self.o_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class Olmo2MLP(nn.Module):
|
|
"""
|
|
This is the MLP block where the output is computed as
|
|
``MLP(x)`` in ``LN(MLP(x + LN(Attention(x))))``
|
|
(plus another skip connection).
|
|
"""
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
assert isinstance(config, Olmo2Config)
|
|
hidden_size = config.hidden_size
|
|
intermediate_size = config.intermediate_size
|
|
|
|
# Feed-forward input projection.
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
hidden_size,
|
|
[intermediate_size] * 2,
|
|
bias=False,
|
|
quant_config=vllm_config.quant_config,
|
|
prefix=f"{prefix}.gate_up_proj",
|
|
)
|
|
|
|
# Activation function.
|
|
self.act_fn = SiluAndMul()
|
|
|
|
# Feed-forward output projection.
|
|
self.down_proj = RowParallelLinear(
|
|
intermediate_size,
|
|
hidden_size,
|
|
bias=False,
|
|
quant_config=vllm_config.quant_config,
|
|
prefix=f"{prefix}.down_proj",
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
gate_up, _ = self.gate_up_proj(x)
|
|
x = self.act_fn(gate_up)
|
|
x, _ = self.down_proj(x)
|
|
return x
|
|
|
|
|
|
class Olmo2DecoderLayer(nn.Module):
|
|
"""
|
|
This is a typical transformer block where the output is
|
|
computed as ``MLP(LN(x + Attention(LN(x))))``
|
|
(plus another skip connection).
|
|
"""
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
assert isinstance(config, Olmo2Config)
|
|
# Attention block.
|
|
self.self_attn = Olmo2Attention(vllm_config=vllm_config,
|
|
prefix=f"{prefix}.self_attn")
|
|
|
|
# MLP block.
|
|
self.mlp = Olmo2MLP(vllm_config=vllm_config, prefix=f"{prefix}.mlp")
|
|
|
|
# LayerNorm
|
|
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
|
eps=config.rms_norm_eps)
|
|
|
|
self.post_feedforward_layernorm = RMSNorm(config.hidden_size,
|
|
eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
# Attention block.
|
|
residual = hidden_states
|
|
hidden_states = self.self_attn(positions, hidden_states)
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states = hidden_states + residual
|
|
|
|
# MLP block.
|
|
residual = hidden_states
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = self.post_feedforward_layernorm(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
return hidden_states
|
|
|
|
|
|
class Olmo2Model(nn.Module):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
self.config = vllm_config.model_config.hf_config
|
|
assert isinstance(self.config, Olmo2Config)
|
|
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
self.config.vocab_size,
|
|
self.config.hidden_size,
|
|
prefix=f"{prefix}.embed_tokens",
|
|
)
|
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
|
self.config.num_hidden_layers,
|
|
lambda prefix: Olmo2DecoderLayer(vllm_config=vllm_config,
|
|
prefix=prefix),
|
|
prefix=f"{prefix}.layers",
|
|
)
|
|
self.norm = RMSNorm(
|
|
self.config.hidden_size,
|
|
eps=self.config.rms_norm_eps,
|
|
)
|
|
self.make_empty_intermediate_tensors = (
|
|
make_empty_intermediate_tensors_factory(["hidden_states"],
|
|
self.config.hidden_size))
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors],
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
"""
|
|
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
|
|
"""
|
|
if get_pp_group().is_first_rank:
|
|
# Get embeddings of input.
|
|
# shape: (batch_size, seq_len, d_model)
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
# embed positions
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
assert isinstance(hidden_states, torch.Tensor)
|
|
|
|
# Apply blocks one-by-one.
|
|
for layer in self.layers[self.start_layer:self.end_layer]:
|
|
# shape: (batch_size, seq_len, d_model)
|
|
hidden_states = layer(positions, hidden_states)
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors({"hidden_states": hidden_states})
|
|
|
|
# Apply final layer norm.
|
|
# shape: (batch_size, seq_len or 1, d_model)
|
|
hidden_states = self.norm(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class Olmo2ForCausalLM(nn.Module, SupportsPP):
|
|
"""
|
|
Extremely barebones HF model wrapper.
|
|
"""
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
assert isinstance(config, Olmo2Config)
|
|
self.config = config
|
|
self.model = Olmo2Model(vllm_config=vllm_config,
|
|
prefix=maybe_prefix(prefix, "model"))
|
|
if config.tie_word_embeddings:
|
|
self.lm_head = self.model.embed_tokens
|
|
else:
|
|
self.unpadded_vocab_size = config.vocab_size
|
|
self.lm_head = ParallelLMHead(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
org_num_embeddings=config.vocab_size,
|
|
quant_config=vllm_config.quant_config,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
self.sampler = Sampler()
|
|
self.make_empty_intermediate_tensors = (
|
|
self.model.make_empty_intermediate_tensors)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
hidden_states = self.model(
|
|
input_ids=input_ids,
|
|
positions=positions,
|
|
intermediate_tensors=intermediate_tensors,
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[torch.Tensor]:
|
|
logits = self.logits_processor(self.lm_head, hidden_states,
|
|
sampling_metadata)
|
|
return logits
|
|
|
|
def sample(
|
|
self,
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[SamplerOutput]:
|
|
next_tokens = self.sampler(logits, sampling_metadata)
|
|
return next_tokens
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
("gate_up_proj", "gate_proj", 0),
|
|
("gate_up_proj", "up_proj", 1),
|
|
]
|
|
|
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
if ("rotary_emb.cos_cached" in name
|
|
or "rotary_emb.sin_cached" in name):
|
|
# Models trained using ColossalAI may include these tensors in
|
|
# the checkpoint. Skip them.
|
|
continue
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
# With tie_word_embeddings, we can skip lm_head.weight
|
|
# The weight might appear unnecessarily in the files if the model is
|
|
# processed with quantization, LoRA, fine-tuning, etc.
|
|
if self.config.tie_word_embeddings and "lm_head.weight" in name:
|
|
continue
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader # type: ignore
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|