Tyler Michael Smith 4f5b059f14
Clean up unused padding_idx variables across many model definitions (#13240)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-03-04 21:27:00 +00:00

598 lines
24 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only LLaMA model compatible with HuggingFace weights."""
from typing import Any, Dict, Iterable, Optional, Set, Tuple, Type, Union
import torch
from torch import nn
from transformers import LlamaConfig
from vllm.attention import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader, maybe_remap_kv_scale_name)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsLoRA, SupportsPP
from .utils import (AutoWeightsLoader, PPMissingLayer, extract_layer_index,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)
class LlamaMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = False,
prefix: str = "",
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
input_size=hidden_size,
output_sizes=[intermediate_size] * 2,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
self.down_proj = RowParallelLinear(
input_size=intermediate_size,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.down_proj",
)
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now.")
self.act_fn = SiluAndMul()
def forward(self, x):
x, _ = self.gate_up_proj(x)
x = self.act_fn(x)
x, _ = self.down_proj(x)
return x
class LlamaAttention(nn.Module):
def __init__(self,
config: LlamaConfig,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
max_position_embeddings: int = 8192,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = False,
bias_o_proj: bool = False,
cache_config: Optional[CacheConfig] = None,
prefix: str = "") -> None:
super().__init__()
layer_idx = extract_layer_index(prefix)
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
# MistralConfig has an optional head_dim introduced by Mistral-Nemo
self.head_dim = getattr(config, "head_dim",
self.hidden_size // self.total_num_heads)
# Phi models introduced a partial_rotary_factor parameter in the config
partial_rotary_factor = getattr(config, "partial_rotary_factor", 1)
self.rotary_dim = int(partial_rotary_factor * self.head_dim)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = QKVParallelLinear(
hidden_size=hidden_size,
head_size=self.head_dim,
total_num_heads=self.total_num_heads,
total_num_kv_heads=self.total_num_kv_heads,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
input_size=self.total_num_heads * self.head_dim,
output_size=hidden_size,
bias=bias_o_proj,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
is_neox_style = True
is_gguf = quant_config and quant_config.get_name() == "gguf"
if is_gguf and config.model_type == "llama":
is_neox_style = False
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.rotary_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
is_neox_style=is_neox_style,
)
if hasattr(config, "interleaved_sliding_window"):
interleaved_sliding_window = config.interleaved_sliding_window
if isinstance(interleaved_sliding_window, int):
sliding_window = interleaved_sliding_window
elif isinstance(interleaved_sliding_window, list):
sw_idx = layer_idx % len(interleaved_sliding_window)
sliding_window = interleaved_sliding_window[sw_idx]
else:
raise ValueError(
f"{type(interleaved_sliding_window)} is not supported.")
else:
sliding_window = None
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
per_layer_sliding_window=sliding_window,
prefix=f"{prefix}.attn",
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output
class LlamaDecoderLayer(nn.Module):
def __init__(
self,
config: LlamaConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
if rope_scaling is not None and getattr(
config, "original_max_position_embeddings", None):
rope_scaling["original_max_position_embeddings"] = (
config.original_max_position_embeddings)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
# Support abacusai/Smaug-72B-v0.1 with attention_bias
# Support internlm/internlm-7b with bias
attention_bias = getattr(config, "attention_bias", False) or getattr(
config, "bias", False)
bias_o_proj = attention_bias
# support internlm/internlm3-8b with qkv_bias
if hasattr(config, 'qkv_bias'):
attention_bias = config.qkv_bias
self.self_attn = LlamaAttention(
config=config,
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=getattr(config, "num_key_value_heads",
config.num_attention_heads),
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
quant_config=quant_config,
bias=attention_bias,
bias_o_proj=bias_o_proj,
cache_config=cache_config,
prefix=f"{prefix}.self_attn",
)
self.mlp = LlamaMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
bias=getattr(config, "mlp_bias", False),
prefix=f"{prefix}.mlp",
)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
hidden_states = self.self_attn(positions=positions,
hidden_states=hidden_states)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
@support_torch_compile
class LlamaModel(nn.Module):
def __init__(self,
*,
vllm_config: VllmConfig,
prefix: str = "",
layer_type: Type[LlamaDecoderLayer] = LlamaDecoderLayer):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
self.quant_config = quant_config
lora_vocab = (lora_config.lora_extra_vocab_size *
(lora_config.max_loras or 1)) if lora_config else 0
self.vocab_size = config.vocab_size + lora_vocab
self.org_vocab_size = config.vocab_size
if get_pp_group().is_first_rank or (config.tie_word_embeddings
and get_pp_group().is_last_rank):
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
quant_config=quant_config,
)
else:
self.embed_tokens = PPMissingLayer()
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: layer_type(config=config,
cache_config=cache_config,
quant_config=quant_config,
prefix=prefix),
prefix=f"{prefix}.layers",
)
if get_pp_group().is_last_rank:
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.norm = PPMissingLayer()
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: Optional[torch.Tensor],
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for layer in self.layers[self.start_layer:self.end_layer]:
hidden_states, residual = layer(positions, hidden_states, residual)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
(".gate_up_proj", ".gate_proj", 0),
(".gate_up_proj", ".up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if ("rotary_emb.cos_cached" in name
or "rotary_emb.sin_cached" in name):
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
if (self.quant_config is not None and
(scale_name := self.quant_config.get_cache_scale(name))):
# Loading kv cache quantization scales
param = params_dict[scale_name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
loaded_weight[0])
weight_loader(param, loaded_weight)
loaded_params.add(scale_name)
continue
if "scale" in name:
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class LlamaForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
packed_modules_mapping = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"]
}
# LoRA specific attributes
embedding_modules = {
"embed_tokens": "input_embeddings",
"lm_head": "output_embeddings"
}
embedding_padding_modules = ["lm_head"]
# Mistral/Llama models can also be loaded with --load-format mistral
# from consolidated.safetensors checkpoints
mistral_mapping = {
"layers": "model.layers",
"attention": "self_attn",
"qscale_act": "input_scale",
"qscale_weight": "weight_scale",
"kv_fake_quantizer.qscale_act": "kv_scale",
"wq": "q_proj",
"wk": "k_proj",
"wv": "v_proj",
"wo": "o_proj",
"attention_norm": "input_layernorm",
"feed_forward": "mlp",
"w1": "gate_proj",
"w2": "down_proj",
"w3": "up_proj",
"ffn_norm": "post_attention_layernorm",
"tok_embeddings": "model.embed_tokens",
"output": "lm_head",
"norm": "model.norm"
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
self.lora_config = lora_config
self.model = self._init_model(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
if get_pp_group().is_last_rank:
self.unpadded_vocab_size = config.vocab_size
if lora_config:
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=(
DEFAULT_VOCAB_PADDING_SIZE
# We need bigger padding if using lora for kernel
# compatibility
if not lora_config else
lora_config.lora_vocab_padding_size),
quant_config=quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
if config.tie_word_embeddings:
self.lm_head = self.lm_head.tie_weights(
self.model.embed_tokens)
logit_scale = getattr(config, "logit_scale", 1.0)
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
config.vocab_size,
logit_scale)
else:
self.lm_head = PPMissingLayer()
self.sampler = get_sampler()
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def _init_model(self, vllm_config: VllmConfig, prefix: str = ""):
return LlamaModel(vllm_config=vllm_config, prefix=prefix)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
model_output = self.model(input_ids, positions, intermediate_tensors,
inputs_embeds)
return model_output
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def sample(self, logits: torch.Tensor,
sampling_metadata: SamplingMetadata) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
loader = AutoWeightsLoader(
self,
skip_prefixes=(["lm_head."]
if self.config.tie_word_embeddings else None),
)
return loader.load_weights(
self.maybe_remap_mistral(name, loaded_weight)
for name, loaded_weight in weights)
# This function is used to remap the mistral format as
# used by Mistral and Llama <=2
def maybe_remap_mistral(
self,
name: str,
loaded_weight: torch.Tensor,
) -> Tuple[str, torch.Tensor]:
def permute(w: torch.Tensor, n_heads: int):
attn_in = self.config.head_dim * n_heads
attn_out = self.config.hidden_size
return w.view(n_heads, attn_in // n_heads // 2, 2,
attn_out).transpose(1, 2).reshape(attn_in, attn_out)
mapping = self.mistral_mapping
modules = name.split(".")
# rotary embeds should be sliced
if "wk" in modules and modules[-1] == "weight":
loaded_weight = permute(loaded_weight,
self.config.num_key_value_heads)
elif "wq" in modules and modules[-1] == "weight":
loaded_weight = permute(loaded_weight,
self.config.num_attention_heads)
num_modules = len(modules)
for i in range(num_modules):
item = modules[i]
next_item = modules[i + 1] if i < num_modules - 1 else None
combined_item = (f"{item}.{next_item}"
if next_item is not None else None)
if combined_item in mapping:
name = name.replace(combined_item, mapping[combined_item])
elif item in mapping and mapping[item] not in name:
name = name.replace(item, mapping[item])
return name, loaded_weight