vllm/vllm/model_executor/models/deepseek_v2.py
Concurrensee c982ac5722
[Bugfix] Fix FP16 overflow for DeepSeek V2 (#13232)
Signed-off-by: Yida Wu <yida.wu@amd.com>
2025-03-10 20:46:59 -07:00

826 lines
34 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2023 DeepSeek-AI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only DeepseekV2/DeepseekV3 model."""
from typing import Any, Dict, Iterable, Optional, Set, Tuple, Union
import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.attention import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, ModelConfig, VllmConfig
from vllm.distributed import (get_pp_group,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_reduce)
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
MergedColumnParallelLinear,
ReplicatedLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader, maybe_remap_kv_scale_name)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsPP
from .utils import (PPMissingLayer, is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)
class DeepseekV2MLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: Optional[QuantizationConfig] = None,
reduce_results: bool = True,
prefix: str = "",
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size, [intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj")
self.down_proj = RowParallelLinear(intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
reduce_results=reduce_results,
prefix=f"{prefix}.down_proj")
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now.")
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class DeepseekV2MoE(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.tp_size = get_tensor_model_parallel_world_size()
self.routed_scaling_factor = config.routed_scaling_factor
self.n_shared_experts = config.n_shared_experts
if config.hidden_act != "silu":
raise ValueError(f"Unsupported activation: {config.hidden_act}. "
"Only silu is supported for now.")
self.gate = ReplicatedLinear(config.hidden_size,
config.n_routed_experts,
bias=False,
quant_config=None,
prefix=f"{prefix}.gate")
if config.topk_method == "noaux_tc":
self.gate.e_score_correction_bias = nn.Parameter(
torch.empty(config.n_routed_experts))
else:
self.gate.e_score_correction_bias = None
self.experts = FusedMoE(
num_experts=config.n_routed_experts,
top_k=config.num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.moe_intermediate_size,
reduce_results=False,
renormalize=config.norm_topk_prob,
quant_config=quant_config,
use_grouped_topk=True,
num_expert_group=config.n_group,
topk_group=config.topk_group,
prefix=f"{prefix}.experts",
scoring_func=config.scoring_func,
e_score_correction_bias=self.gate.e_score_correction_bias)
if config.n_shared_experts is not None:
intermediate_size = (config.moe_intermediate_size *
config.n_shared_experts)
self.shared_experts = DeepseekV2MLP(
hidden_size=config.hidden_size,
intermediate_size=intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
reduce_results=False,
prefix=f"{prefix}.shared_experts",
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
num_tokens, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
if self.n_shared_experts is not None:
shared_output = self.shared_experts(hidden_states)
# router_logits: (num_tokens, n_experts)
router_logits, _ = self.gate(hidden_states)
if hidden_states.dtype != torch.float16:
final_hidden_states = self.experts(
hidden_states=hidden_states,
router_logits=router_logits) * self.routed_scaling_factor
else:
# This is a special case to avoid FP16 overflow
final_hidden_states = self.experts(hidden_states=hidden_states,
router_logits=router_logits)
if shared_output is not None:
if hidden_states.dtype != torch.float16:
final_hidden_states = final_hidden_states + shared_output
else:
# This is a special case to avoid FP16 overflow
final_hidden_states = final_hidden_states + shared_output \
* (1. / self.routed_scaling_factor)
if self.tp_size > 1:
final_hidden_states = tensor_model_parallel_all_reduce(
final_hidden_states)
return final_hidden_states.view(num_tokens, hidden_dim)
def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
import math
if scale <= 1:
return 1.0
return 0.1 * mscale * math.log(scale) + 1.0
class DeepseekV2Attention(nn.Module):
def __init__(
self,
config: PretrainedConfig,
hidden_size: int,
num_heads: int,
qk_nope_head_dim: int,
qk_rope_head_dim: int,
v_head_dim: int,
q_lora_rank: int,
kv_lora_rank: int,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
max_position_embeddings: int = 8192,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = hidden_size
self.qk_nope_head_dim = qk_nope_head_dim
self.qk_rope_head_dim = qk_rope_head_dim
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
self.v_head_dim = v_head_dim
self.q_lora_rank = q_lora_rank
self.kv_lora_rank = kv_lora_rank
self.num_heads = num_heads
tp_size = get_tensor_model_parallel_world_size()
assert num_heads % tp_size == 0
self.num_local_heads = num_heads // tp_size
self.scaling = self.qk_head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
if self.q_lora_rank is not None:
self.q_a_proj = ReplicatedLinear(self.hidden_size,
self.q_lora_rank,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.q_a_proj")
self.q_a_layernorm = RMSNorm(self.q_lora_rank,
eps=config.rms_norm_eps)
self.q_b_proj = ColumnParallelLinear(q_lora_rank,
self.num_heads *
self.qk_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.q_b_proj")
else:
self.q_proj = ColumnParallelLinear(self.hidden_size,
self.num_heads *
self.qk_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.q_proj")
self.kv_a_proj_with_mqa = ReplicatedLinear(
self.hidden_size,
self.kv_lora_rank + self.qk_rope_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.kv_a_proj_with_mqa")
self.kv_a_layernorm = RMSNorm(self.kv_lora_rank,
eps=config.rms_norm_eps)
self.kv_b_proj = ColumnParallelLinear(
self.kv_lora_rank,
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.kv_b_proj")
# O projection.
self.o_proj = RowParallelLinear(self.num_heads * self.v_head_dim,
self.hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj")
if rope_scaling:
rope_scaling["rope_type"] = 'deepseek_yarn'
self.rotary_emb = get_rope(qk_rope_head_dim,
rotary_dim=qk_rope_head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
is_neox_style=False)
if rope_scaling:
mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
scaling_factor = rope_scaling["factor"]
mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
self.scaling = self.scaling * mscale * mscale
self.attn = Attention(self.num_local_heads,
self.qk_head_dim,
self.scaling,
num_kv_heads=self.num_local_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn")
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
if self.q_lora_rank is not None:
q = self.q_a_proj(hidden_states)[0]
q = self.q_a_layernorm(q)
q = self.q_b_proj(q)[0].view(-1, self.num_local_heads,
self.qk_head_dim)
else:
q = self.q_proj(hidden_states)[0].view(-1, self.num_local_heads,
self.qk_head_dim)
q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim],
dim=-1)
latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
kv_a, _ = latent_cache.split(
[self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
latent_cache = latent_cache.unsqueeze(1)
kv_a = self.kv_a_layernorm(kv_a.contiguous())
kv = self.kv_b_proj(kv_a)[0]
kv = kv.view(-1, self.num_local_heads,
self.qk_nope_head_dim + self.v_head_dim)
k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
k_pe = latent_cache[:, :, self.kv_lora_rank:]
q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
q[..., self.qk_nope_head_dim:] = q_pe
k = torch.empty_like(q)
k[..., :self.qk_nope_head_dim] = k_nope
k[..., self.qk_nope_head_dim:] = k_pe
# padding value to qk_head_dim for alignment
v = torch.nn.functional.pad(
v, [0, self.qk_head_dim - self.v_head_dim],
value=0).view(-1, self.num_local_heads * self.qk_head_dim)
attn_output = self.attn(q, k, v)
attn_output = attn_output.view(
-1, self.num_local_heads,
self.qk_head_dim)[..., :self.v_head_dim].reshape(
-1, self.num_local_heads * self.v_head_dim)
output, _ = self.o_proj(attn_output)
return output
class DeepseekV2MLAAttention(nn.Module):
"""
Main reference: DeepseekV2 paper, and FlashInfer Implementation
(https://arxiv.org/abs/2405.04434 and https://github.com/flashinfer-ai/flashinfer/pull/551).
For more info see MLACommonImpl in: vllm/attention/backends/mla/utils.py
"""
def __init__(
self,
config: PretrainedConfig,
hidden_size: int,
num_heads: int,
qk_nope_head_dim: int,
qk_rope_head_dim: int,
v_head_dim: int,
q_lora_rank: Optional[int],
kv_lora_rank: int,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
max_position_embeddings: int = 8192,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = hidden_size
self.qk_nope_head_dim = qk_nope_head_dim
self.qk_rope_head_dim = qk_rope_head_dim
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
self.v_head_dim = v_head_dim
self.q_lora_rank = q_lora_rank
self.kv_lora_rank = kv_lora_rank
self.num_heads = num_heads
tp_size = get_tensor_model_parallel_world_size()
assert num_heads % tp_size == 0
self.num_local_heads = num_heads // tp_size
self.scaling = self.qk_head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
if self.q_lora_rank is not None:
self.q_a_proj = ReplicatedLinear(self.hidden_size,
self.q_lora_rank,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.q_a_proj")
self.q_a_layernorm = RMSNorm(self.q_lora_rank,
eps=config.rms_norm_eps)
self.q_b_proj = ColumnParallelLinear(q_lora_rank,
self.num_heads *
self.qk_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.q_b_proj")
else:
self.q_proj = ColumnParallelLinear(self.hidden_size,
self.num_heads *
self.qk_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.q_proj")
self.kv_a_proj_with_mqa = ReplicatedLinear(
self.hidden_size,
self.kv_lora_rank + self.qk_rope_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.kv_a_proj_with_mqa")
self.kv_a_layernorm = RMSNorm(self.kv_lora_rank,
eps=config.rms_norm_eps)
self.kv_b_proj = ColumnParallelLinear(
self.kv_lora_rank,
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.kv_b_proj")
self.o_proj = RowParallelLinear(self.num_heads * self.v_head_dim,
self.hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj")
if rope_scaling:
rope_scaling["rope_type"] = 'deepseek_yarn'
self.rotary_emb = get_rope(qk_rope_head_dim,
rotary_dim=qk_rope_head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
is_neox_style=False)
if rope_scaling:
mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
scaling_factor = rope_scaling["factor"]
mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
self.scaling = self.scaling * mscale * mscale
# In the MLA backend, kv_cache includes both k_c and
# pe (i.e. decoupled position embeddings). In particular,
# the concat_and_cache_mla op requires
# k_c.size(1) + k_pe.size(1) == kv_cache.size(2)
# i.e.
# kv_lora_rank + qk_rope_head_dim == head_size
self.mla_attn = Attention(
num_heads=self.num_local_heads,
head_size=self.kv_lora_rank + self.qk_rope_head_dim,
scale=self.scaling,
num_kv_heads=1,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
use_mla=True,
# MLA Args
q_lora_rank=self.q_lora_rank,
kv_lora_rank=self.kv_lora_rank,
qk_nope_head_dim=self.qk_nope_head_dim,
qk_rope_head_dim=self.qk_rope_head_dim,
qk_head_dim=self.qk_head_dim,
v_head_dim=self.v_head_dim,
rotary_emb=self.rotary_emb,
q_proj=self.q_proj if self.q_lora_rank is None else self.q_b_proj,
kv_b_proj=self.kv_b_proj,
o_proj=self.o_proj,
)
self.prefix = prefix
self.debug_layer_idx = int(self.prefix.split(".")[-2])
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
if self.q_lora_rank is not None:
ckq = self.q_a_proj(hidden_states)[0]
hidden_states_or_q_c = self.q_a_layernorm(ckq)
else:
hidden_states_or_q_c = hidden_states
kv_c, k_pe = self.kv_a_proj_with_mqa(hidden_states)[0].split(
[self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
kv_c_normed = self.kv_a_layernorm(kv_c.contiguous())
return self.mla_attn(hidden_states_or_q_c,
kv_c_normed,
k_pe,
output_shape=hidden_states.shape)
class DeepseekV2DecoderLayer(nn.Module):
def __init__(
self,
config: PretrainedConfig,
prefix: str,
model_config: ModelConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
# DecoderLayers are created with `make_layers` which passes the prefix
# with the layer's index.
layer_idx = int(prefix.split(sep='.')[-1])
if model_config.use_mla:
attn_cls = DeepseekV2MLAAttention
else:
attn_cls = DeepseekV2Attention
self.self_attn = attn_cls(
config=config,
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
qk_nope_head_dim=config.qk_nope_head_dim,
qk_rope_head_dim=config.qk_rope_head_dim,
v_head_dim=config.v_head_dim,
q_lora_rank=config.q_lora_rank
if hasattr(config, "q_lora_rank") else None,
kv_lora_rank=config.kv_lora_rank,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
if (config.n_routed_experts is not None
and layer_idx >= config.first_k_dense_replace
and layer_idx % config.moe_layer_freq == 0):
self.mlp = DeepseekV2MoE(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
else:
self.mlp = DeepseekV2MLP(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.routed_scaling_factor = config.routed_scaling_factor
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
) -> torch.Tensor:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
)
# Fully Connected
if isinstance(self.mlp, DeepseekV2MoE) and \
hidden_states.dtype == torch.float16:
# This is a special case to avoid FP16 overflow
hidden_states *= 1. / self.routed_scaling_factor
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
hidden_states = self.mlp(hidden_states)
if isinstance(self.mlp, DeepseekV2MLP) and \
hidden_states.dtype == torch.float16:
# This is a special case to avoid FP16 overflow
hidden_states *= 1. / self.routed_scaling_factor
residual *= 1. / self.routed_scaling_factor
return hidden_states, residual
@support_torch_compile
class DeepseekV2Model(nn.Module):
fall_back_to_pt_during_load = False
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
model_config = vllm_config.model_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.vocab_size = config.vocab_size
if get_pp_group().is_first_rank:
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=f"{prefix}.embed_tokens")
else:
self.embed_tokens = PPMissingLayer()
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: DeepseekV2DecoderLayer(
config,
prefix,
model_config=model_config,
cache_config=cache_config,
quant_config=quant_config,
),
prefix=f"{prefix}.layers")
if get_pp_group().is_last_rank:
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.norm = PPMissingLayer()
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for layer in self.layers[self.start_layer:self.end_layer]:
hidden_states, residual = layer(positions, hidden_states, residual)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class DeepseekV2ForCausalLM(nn.Module, SupportsPP):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.config = config
self.quant_config = quant_config
self.model = DeepseekV2Model(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
if get_pp_group().is_last_rank:
self.lm_head = ParallelLMHead(config.vocab_size,
config.hidden_size,
quant_config=quant_config)
else:
self.lm_head = PPMissingLayer()
self.logits_processor = LogitsProcessor(config.vocab_size)
self.sampler = get_sampler()
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: Optional[torch.Tensor],
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def make_empty_intermediate_tensors(
self, batch_size: int, dtype: torch.dtype,
device: torch.device) -> IntermediateTensors:
return IntermediateTensors({
"hidden_states":
torch.zeros((batch_size, self.config.hidden_size),
dtype=dtype,
device=device),
"residual":
torch.zeros((batch_size, self.config.hidden_size),
dtype=dtype,
device=device),
})
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
# Params for weights, fp8 weight scales, fp8 activation scales
# (param_name, weight_name, expert_id, shard_id)
expert_params_mapping = FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.n_routed_experts)
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
if spec_layer is not None:
continue # skip spec decode layers for main model
for (param_name, weight_name, shard_id) in stacked_params_mapping:
# Skip non-stacked layers and experts (experts handled below).
if weight_name not in name:
continue
# We have mlp.experts[0].gate_proj in the checkpoint.
# Since we handle the experts below in expert_params_mapping,
# we need to skip here BEFORE we update the name, otherwise
# name will be updated to mlp.experts[0].gate_up_proj, which
# will then be updated below in expert_params_mapping
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
if (("mlp.experts." in name) and name not in params_dict):
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param,
loaded_weight,
name,
shard_id=shard_id,
expert_id=expert_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
pass
def get_spec_layer_idx_from_weight_name(config: PretrainedConfig,
weight_name: str) -> Optional[int]:
if hasattr(config,
"num_nextn_predict_layers") and (config.num_nextn_predict_layers
> 0):
layer_idx = config.num_hidden_layers
for i in range(config.num_nextn_predict_layers):
if weight_name.startswith(f"model.layers.{layer_idx+i}."):
return layer_idx + i
return None