
Signed-off-by: jiang1.li <jiang1.li@intel.com> Co-authored-by: Isotr0py <2037008807@qq.com>
152 lines
4.9 KiB
Python
152 lines
4.9 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
from dataclasses import dataclass
|
|
from typing import Optional
|
|
|
|
import pytest
|
|
from packaging.version import Version
|
|
from transformers import __version__ as TRANSFORMERS_VERSION
|
|
|
|
import vllm
|
|
from vllm.assets.image import ImageAsset
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.platforms import current_platform
|
|
|
|
|
|
@pytest.fixture(autouse=not current_platform.is_cpu())
|
|
def v1(run_with_both_engines_lora):
|
|
# Simple autouse wrapper to run both engines for each test
|
|
# This can be promoted up to conftest.py to run for every
|
|
# test in a package
|
|
pass
|
|
|
|
|
|
@dataclass
|
|
class TestConfig:
|
|
model_path: str
|
|
lora_path: str
|
|
max_num_seqs: int = 2
|
|
max_loras: int = 2
|
|
max_lora_rank: int = 16
|
|
max_model_len: int = 4096
|
|
mm_processor_kwargs: Optional[dict[str, int]] = None
|
|
|
|
def __post_init__(self):
|
|
if self.mm_processor_kwargs is None:
|
|
self.mm_processor_kwargs = {
|
|
"min_pixels": 28 * 28,
|
|
"max_pixels": 1280 * 28 * 28,
|
|
}
|
|
|
|
|
|
class Qwen2VLTester:
|
|
"""Test helper for Qwen2 VL models with LoRA"""
|
|
|
|
PROMPT_TEMPLATE = (
|
|
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>"
|
|
"\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>"
|
|
"What is in the image?<|im_end|>\n"
|
|
"<|im_start|>assistant\n")
|
|
|
|
def __init__(self, config: TestConfig):
|
|
self.config = config
|
|
self.llm = self._initialize_llm()
|
|
|
|
def _initialize_llm(self) -> vllm.LLM:
|
|
"""Initialize the LLM with given configuration"""
|
|
return vllm.LLM(
|
|
model=self.config.model_path,
|
|
max_num_seqs=self.config.max_num_seqs,
|
|
enable_lora=True,
|
|
max_loras=self.config.max_loras,
|
|
max_lora_rank=self.config.max_lora_rank,
|
|
trust_remote_code=True,
|
|
mm_processor_kwargs=self.config.mm_processor_kwargs,
|
|
max_model_len=self.config.max_model_len,
|
|
)
|
|
|
|
def run_test(self,
|
|
images: list[ImageAsset],
|
|
expected_outputs: list[str],
|
|
lora_id: Optional[int] = None,
|
|
temperature: float = 0,
|
|
max_tokens: int = 5) -> list[str]:
|
|
|
|
sampling_params = vllm.SamplingParams(
|
|
temperature=temperature,
|
|
max_tokens=max_tokens,
|
|
)
|
|
inputs = [{
|
|
"prompt": self.PROMPT_TEMPLATE,
|
|
"multi_modal_data": {
|
|
"image": asset.pil_image
|
|
},
|
|
} for asset in images]
|
|
|
|
lora_request = LoRARequest(str(lora_id), lora_id,
|
|
self.config.lora_path)
|
|
outputs = self.llm.generate(inputs,
|
|
sampling_params,
|
|
lora_request=lora_request)
|
|
generated_texts = [
|
|
output.outputs[0].text.strip() for output in outputs
|
|
]
|
|
|
|
# Validate outputs
|
|
for generated, expected in zip(generated_texts, expected_outputs):
|
|
assert expected.startswith(
|
|
generated), f"Generated text {generated} doesn't "
|
|
f"match expected pattern {expected}"
|
|
|
|
return generated_texts
|
|
|
|
|
|
TEST_IMAGES = [
|
|
ImageAsset("stop_sign"),
|
|
ImageAsset("cherry_blossom"),
|
|
]
|
|
|
|
EXPECTED_OUTPUTS = [
|
|
"A red stop sign stands prominently in the foreground, with a traditional Chinese gate and a black SUV in the background, illustrating a blend of modern and cultural elements.", # noqa: E501
|
|
"A majestic skyscraper stands tall, partially obscured by a vibrant canopy of cherry blossoms, against a clear blue sky.", # noqa: E501
|
|
]
|
|
|
|
QWEN2VL_MODEL_PATH = "Qwen/Qwen2-VL-2B-Instruct"
|
|
QWEN25VL_MODEL_PATH = "Qwen/Qwen2.5-VL-3B-Instruct"
|
|
|
|
|
|
@pytest.mark.xfail(
|
|
current_platform.is_rocm(),
|
|
reason="Qwen2-VL dependency xformers incompatible with ROCm")
|
|
def test_qwen2vl_lora(qwen2vl_lora_files):
|
|
"""Test Qwen 2.0 VL model with LoRA"""
|
|
config = TestConfig(model_path=QWEN2VL_MODEL_PATH,
|
|
lora_path=qwen2vl_lora_files)
|
|
tester = Qwen2VLTester(config)
|
|
|
|
# Test with different LoRA IDs
|
|
for lora_id in [1, 2]:
|
|
tester.run_test(TEST_IMAGES,
|
|
expected_outputs=EXPECTED_OUTPUTS,
|
|
lora_id=lora_id)
|
|
|
|
|
|
@pytest.mark.xfail(
|
|
current_platform.is_rocm(),
|
|
reason="Qwen2.5-VL dependency xformers incompatible with ROCm",
|
|
)
|
|
@pytest.mark.skipif(
|
|
Version(TRANSFORMERS_VERSION) < Version("4.49.0"),
|
|
reason="Qwen2.5-VL require transformers version no lower than 4.49.0",
|
|
)
|
|
def test_qwen25vl_lora(qwen25vl_lora_files):
|
|
"""Test Qwen 2.5 VL model with LoRA"""
|
|
config = TestConfig(model_path=QWEN25VL_MODEL_PATH,
|
|
lora_path=qwen25vl_lora_files)
|
|
tester = Qwen2VLTester(config)
|
|
|
|
# Test with different LoRA IDs
|
|
for lora_id in [1, 2]:
|
|
tester.run_test(TEST_IMAGES,
|
|
expected_outputs=EXPECTED_OUTPUTS,
|
|
lora_id=lora_id)
|