
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
144 lines
4.8 KiB
Python
144 lines
4.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import socket
|
|
|
|
import pytest
|
|
import ray
|
|
import torch
|
|
|
|
import vllm.envs as envs
|
|
from vllm.distributed.device_communicators.pynccl import PyNcclCommunicator
|
|
from vllm.distributed.utils import StatelessProcessGroup
|
|
from vllm.utils import (cuda_device_count_stateless, get_open_port,
|
|
update_environment_variables)
|
|
|
|
from ..utils import multi_gpu_test
|
|
|
|
|
|
@ray.remote
|
|
class _CUDADeviceCountStatelessTestActor:
|
|
|
|
def get_count(self):
|
|
return cuda_device_count_stateless()
|
|
|
|
def set_cuda_visible_devices(self, cuda_visible_devices: str):
|
|
update_environment_variables(
|
|
{"CUDA_VISIBLE_DEVICES": cuda_visible_devices})
|
|
|
|
def get_cuda_visible_devices(self):
|
|
return envs.CUDA_VISIBLE_DEVICES
|
|
|
|
|
|
def test_cuda_device_count_stateless():
|
|
"""Test that cuda_device_count_stateless changes return value if
|
|
CUDA_VISIBLE_DEVICES is changed."""
|
|
actor = _CUDADeviceCountStatelessTestActor.options( # type: ignore
|
|
num_gpus=2).remote()
|
|
assert len(
|
|
sorted(ray.get(
|
|
actor.get_cuda_visible_devices.remote()).split(","))) == 2
|
|
assert ray.get(actor.get_count.remote()) == 2
|
|
ray.get(actor.set_cuda_visible_devices.remote("0"))
|
|
assert ray.get(actor.get_count.remote()) == 1
|
|
ray.get(actor.set_cuda_visible_devices.remote(""))
|
|
assert ray.get(actor.get_count.remote()) == 0
|
|
|
|
|
|
def cpu_worker(rank, WORLD_SIZE, port1, port2):
|
|
pg1 = StatelessProcessGroup.create(host="127.0.0.1",
|
|
port=port1,
|
|
rank=rank,
|
|
world_size=WORLD_SIZE)
|
|
if rank <= 2:
|
|
pg2 = StatelessProcessGroup.create(host="127.0.0.1",
|
|
port=port2,
|
|
rank=rank,
|
|
world_size=3)
|
|
data = torch.tensor([rank])
|
|
data = pg1.broadcast_obj(data, src=2)
|
|
assert data.item() == 2
|
|
if rank <= 2:
|
|
data = torch.tensor([rank + 1])
|
|
data = pg2.broadcast_obj(data, src=2)
|
|
assert data.item() == 3
|
|
pg2.barrier()
|
|
pg1.barrier()
|
|
|
|
|
|
def gpu_worker(rank, WORLD_SIZE, port1, port2):
|
|
torch.cuda.set_device(rank)
|
|
pg1 = StatelessProcessGroup.create(host="127.0.0.1",
|
|
port=port1,
|
|
rank=rank,
|
|
world_size=WORLD_SIZE)
|
|
pynccl1 = PyNcclCommunicator(pg1, device=rank)
|
|
if rank <= 2:
|
|
pg2 = StatelessProcessGroup.create(host="127.0.0.1",
|
|
port=port2,
|
|
rank=rank,
|
|
world_size=3)
|
|
pynccl2 = PyNcclCommunicator(pg2, device=rank)
|
|
data = torch.tensor([rank]).cuda()
|
|
pynccl1.all_reduce(data)
|
|
pg1.barrier()
|
|
torch.cuda.synchronize()
|
|
if rank <= 2:
|
|
pynccl2.all_reduce(data)
|
|
pg2.barrier()
|
|
torch.cuda.synchronize()
|
|
item = data[0].item()
|
|
print(f"rank: {rank}, item: {item}")
|
|
if rank == 3:
|
|
assert item == 6
|
|
else:
|
|
assert item == 18
|
|
|
|
|
|
def broadcast_worker(rank, WORLD_SIZE, port1, port2):
|
|
pg1 = StatelessProcessGroup.create(host="127.0.0.1",
|
|
port=port1,
|
|
rank=rank,
|
|
world_size=WORLD_SIZE)
|
|
if rank == 2:
|
|
pg1.broadcast_obj("secret", src=2)
|
|
else:
|
|
obj = pg1.broadcast_obj(None, src=2)
|
|
assert obj == "secret"
|
|
pg1.barrier()
|
|
|
|
|
|
def allgather_worker(rank, WORLD_SIZE, port1, port2):
|
|
pg1 = StatelessProcessGroup.create(host="127.0.0.1",
|
|
port=port1,
|
|
rank=rank,
|
|
world_size=WORLD_SIZE)
|
|
data = pg1.all_gather_obj(rank)
|
|
assert data == list(range(WORLD_SIZE))
|
|
pg1.barrier()
|
|
|
|
|
|
@pytest.mark.skip(reason="This test is flaky and prone to hang.")
|
|
@multi_gpu_test(num_gpus=4)
|
|
@pytest.mark.parametrize(
|
|
"worker", [cpu_worker, gpu_worker, broadcast_worker, allgather_worker])
|
|
def test_stateless_process_group(worker):
|
|
port1 = get_open_port()
|
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
|
s.bind(("", port1))
|
|
port2 = get_open_port()
|
|
WORLD_SIZE = 4
|
|
from multiprocessing import get_context
|
|
ctx = get_context("fork")
|
|
processes = []
|
|
for i in range(WORLD_SIZE):
|
|
rank = i
|
|
processes.append(
|
|
ctx.Process(target=worker, args=(rank, WORLD_SIZE, port1, port2)))
|
|
for p in processes:
|
|
p.start()
|
|
for p in processes:
|
|
p.join()
|
|
for p in processes:
|
|
assert not p.exitcode
|
|
print("All processes finished.")
|