2.2 KiB
2.2 KiB
(installation-xpu)=
Installation for XPUs
vLLM initially supports basic model inferencing and serving on Intel GPU platform.
Table of contents:
(xpu-backend-requirements)=
Requirements
- OS: Linux
- Supported Hardware: Intel Data Center GPU, Intel ARC GPU
- OneAPI requirements: oneAPI 2024.2
(xpu-backend-quick-start-dockerfile)=
Quick start using Dockerfile
$ docker build -f Dockerfile.xpu -t vllm-xpu-env --shm-size=4g .
$ docker run -it \
--rm \
--network=host \
--device /dev/dri \
-v /dev/dri/by-path:/dev/dri/by-path \
vllm-xpu-env
(build-xpu-backend-from-source)=
Build from source
- First, install required driver and intel OneAPI 2024.2 or later.
- Second, install Python packages for vLLM XPU backend building:
$ source /opt/intel/oneapi/setvars.sh
$ pip install --upgrade pip
$ pip install -v -r requirements-xpu.txt
- Finally, build and install vLLM XPU backend:
$ VLLM_TARGET_DEVICE=xpu python setup.py install
- FP16 is the default data type in the current XPU backend. The BF16 data
type will be supported in the future.
Distributed inference and serving
XPU platform supports tensor-parallel inference/serving and also supports pipeline parallel as a beta feature for online serving. We requires Ray as the distributed runtime backend. For example, a reference execution likes following:
$ python -m vllm.entrypoints.openai.api_server \
$ --model=facebook/opt-13b \
$ --dtype=bfloat16 \
$ --device=xpu \
$ --max_model_len=1024 \
$ --distributed-executor-backend=ray \
$ --pipeline-parallel-size=2 \
$ -tp=8
By default, a ray instance will be launched automatically if no existing one is detected in system, with num-gpus
equals to parallel_config.world_size
. We recommend properly starting a ray cluster before execution, referring to the gh-file:examples/online_serving/run_cluster.sh helper script.