vllm/tests/kernels/test_int8_quant.py

59 lines
2.2 KiB
Python

import pytest
import torch
from tests.kernels.quant_utils import ref_dynamic_per_token_quant
from vllm._custom_ops import scaled_int8_quant
DTYPES = [torch.half, torch.bfloat16, torch.float]
HIDDEN_SIZES = [16, 67, 768, 2048, 5120, 5137, 8192,
8193] # Arbitrary values for testing
NUM_TOKENS = [1, 7, 83, 4096] # Arbitrary values for testing
SEEDS = [0]
SCALE = [0.1, 0.5, 0.8, 1.2, 2.1]
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@torch.inference_mode()
def test_dynamic_scaled_int8_quant(num_tokens: int, hidden_size: int,
dtype: torch.dtype, seed: int) -> None:
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda") * 1000
# reference
ref_out, ref_scales = ref_dynamic_per_token_quant(x, torch.int8)
# kernel
ops_out, ops_scales = scaled_int8_quant(x)
assert torch.allclose(ops_scales, ref_scales)
assert torch.allclose(ops_out, ref_out,
atol=1) # big atol to account for rounding errors
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("scale", SCALE)
@torch.inference_mode()
def test_static_scaled_int8_quant(num_tokens: int, hidden_size: int,
dtype: torch.dtype, seed: int,
scale: float) -> None:
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
int8_traits = torch.iinfo(torch.int8)
x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda") * 1000
scale = torch.tensor([scale], dtype=torch.float32, device="cuda")
out1 = (x / scale).round().clamp(int8_traits.min,
int8_traits.max).to(torch.int8)
out2, _ = scaled_int8_quant(x, scale)
assert torch.allclose(out1, out2,
atol=1) # big atol to account for rounding errors