84 lines
2.3 KiB
Python
84 lines
2.3 KiB
Python
"""Compare the outputs of HF and vLLM for Mistral models using greedy sampling.
|
|
|
|
Run `pytest tests/models/test_mistral.py`.
|
|
"""
|
|
import pytest
|
|
|
|
from ...utils import check_logprobs_close
|
|
|
|
MODELS = [
|
|
"mistralai/Mistral-7B-Instruct-v0.1",
|
|
"mistralai/Mistral-7B-Instruct-v0.3",
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["bfloat16"])
|
|
@pytest.mark.parametrize("max_tokens", [64])
|
|
@pytest.mark.parametrize("num_logprobs", [5])
|
|
def test_models(
|
|
hf_runner,
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
num_logprobs: int,
|
|
) -> None:
|
|
# TODO(sang): Sliding window should be tested separately.
|
|
with hf_runner(model, dtype=dtype) as hf_model:
|
|
hf_outputs = hf_model.generate_greedy_logprobs_limit(
|
|
example_prompts, max_tokens, num_logprobs)
|
|
|
|
with vllm_runner(model, dtype=dtype,
|
|
tokenizer_mode="mistral") as vllm_model:
|
|
vllm_outputs = vllm_model.generate_greedy_logprobs(
|
|
example_prompts, max_tokens, num_logprobs)
|
|
|
|
check_logprobs_close(
|
|
outputs_0_lst=hf_outputs,
|
|
outputs_1_lst=vllm_outputs,
|
|
name_0="hf",
|
|
name_1="vllm",
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS[1:])
|
|
@pytest.mark.parametrize("dtype", ["bfloat16"])
|
|
@pytest.mark.parametrize("max_tokens", [64])
|
|
@pytest.mark.parametrize("num_logprobs", [5])
|
|
def test_mistral_format(
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
num_logprobs: int,
|
|
) -> None:
|
|
with vllm_runner(
|
|
model,
|
|
dtype=dtype,
|
|
tokenizer_mode="auto",
|
|
load_format="safetensors",
|
|
config_format="hf",
|
|
) as hf_format_model:
|
|
hf_format_outputs = hf_format_model.generate_greedy_logprobs(
|
|
example_prompts, max_tokens, num_logprobs)
|
|
|
|
with vllm_runner(
|
|
model,
|
|
dtype=dtype,
|
|
tokenizer_mode="mistral",
|
|
load_format="mistral",
|
|
config_format="mistral",
|
|
) as mistral_format_model:
|
|
mistral_format_outputs = mistral_format_model.generate_greedy_logprobs(
|
|
example_prompts, max_tokens, num_logprobs)
|
|
|
|
check_logprobs_close(
|
|
outputs_0_lst=hf_format_outputs,
|
|
outputs_1_lst=mistral_format_outputs,
|
|
name_0="hf",
|
|
name_1="mistral",
|
|
)
|