
Signed-off-by: Ce Gao <cegao@tensorchord.ai> Co-authored-by: Rafael Vasquez <rafvasq21@gmail.com> Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com> Co-authored-by: Michael Goin <mgoin@redhat.com>
209 lines
7.0 KiB
Python
209 lines
7.0 KiB
Python
# The CLI entrypoint to vLLM.
|
|
import argparse
|
|
import os
|
|
import signal
|
|
import sys
|
|
from typing import List, Optional
|
|
|
|
import uvloop
|
|
from openai import OpenAI
|
|
from openai.types.chat import ChatCompletionMessageParam
|
|
|
|
import vllm.version
|
|
from vllm.engine.arg_utils import EngineArgs
|
|
from vllm.entrypoints.openai.api_server import run_server
|
|
from vllm.entrypoints.openai.cli_args import (make_arg_parser,
|
|
validate_parsed_serve_args)
|
|
from vllm.logger import init_logger
|
|
from vllm.utils import FlexibleArgumentParser
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
def register_signal_handlers():
|
|
|
|
def signal_handler(sig, frame):
|
|
sys.exit(0)
|
|
|
|
signal.signal(signal.SIGINT, signal_handler)
|
|
signal.signal(signal.SIGTSTP, signal_handler)
|
|
|
|
|
|
def serve(args: argparse.Namespace) -> None:
|
|
# The default value of `--model`
|
|
if args.model != EngineArgs.model:
|
|
raise ValueError(
|
|
"With `vllm serve`, you should provide the model as a "
|
|
"positional argument instead of via the `--model` option.")
|
|
|
|
# EngineArgs expects the model name to be passed as --model.
|
|
args.model = args.model_tag
|
|
|
|
uvloop.run(run_server(args))
|
|
|
|
|
|
def interactive_cli(args: argparse.Namespace) -> None:
|
|
register_signal_handlers()
|
|
|
|
base_url = args.url
|
|
api_key = args.api_key or os.environ.get("OPENAI_API_KEY", "EMPTY")
|
|
openai_client = OpenAI(api_key=api_key, base_url=base_url)
|
|
|
|
if args.model_name:
|
|
model_name = args.model_name
|
|
else:
|
|
available_models = openai_client.models.list()
|
|
model_name = available_models.data[0].id
|
|
|
|
print(f"Using model: {model_name}")
|
|
|
|
if args.command == "complete":
|
|
complete(model_name, openai_client)
|
|
elif args.command == "chat":
|
|
chat(args.system_prompt, model_name, openai_client)
|
|
|
|
|
|
def complete(model_name: str, client: OpenAI) -> None:
|
|
print("Please enter prompt to complete:")
|
|
while True:
|
|
input_prompt = input("> ")
|
|
|
|
completion = client.completions.create(model=model_name,
|
|
prompt=input_prompt)
|
|
output = completion.choices[0].text
|
|
print(output)
|
|
|
|
|
|
def chat(system_prompt: Optional[str], model_name: str,
|
|
client: OpenAI) -> None:
|
|
conversation: List[ChatCompletionMessageParam] = []
|
|
if system_prompt is not None:
|
|
conversation.append({"role": "system", "content": system_prompt})
|
|
|
|
print("Please enter a message for the chat model:")
|
|
while True:
|
|
input_message = input("> ")
|
|
conversation.append({"role": "user", "content": input_message})
|
|
|
|
chat_completion = client.chat.completions.create(model=model_name,
|
|
messages=conversation)
|
|
|
|
response_message = chat_completion.choices[0].message
|
|
output = response_message.content
|
|
|
|
conversation.append(response_message) # type: ignore
|
|
print(output)
|
|
|
|
|
|
def _add_query_options(
|
|
parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
|
|
parser.add_argument(
|
|
"--url",
|
|
type=str,
|
|
default="http://localhost:8000/v1",
|
|
help="url of the running OpenAI-Compatible RESTful API server")
|
|
parser.add_argument(
|
|
"--model-name",
|
|
type=str,
|
|
default=None,
|
|
help=("The model name used in prompt completion, default to "
|
|
"the first model in list models API call."))
|
|
parser.add_argument(
|
|
"--api-key",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"API key for OpenAI services. If provided, this api key "
|
|
"will overwrite the api key obtained through environment variables."
|
|
))
|
|
return parser
|
|
|
|
|
|
def env_setup():
|
|
# The safest multiprocessing method is `spawn`, as the default `fork` method
|
|
# is not compatible with some accelerators. The default method will be
|
|
# changing in future versions of Python, so we should use it explicitly when
|
|
# possible.
|
|
#
|
|
# We only set it here in the CLI entrypoint, because changing to `spawn`
|
|
# could break some existing code using vLLM as a library. `spawn` will cause
|
|
# unexpected behavior if the code is not protected by
|
|
# `if __name__ == "__main__":`.
|
|
#
|
|
# References:
|
|
# - https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods
|
|
# - https://pytorch.org/docs/stable/notes/multiprocessing.html#cuda-in-multiprocessing
|
|
# - https://pytorch.org/docs/stable/multiprocessing.html#sharing-cuda-tensors
|
|
# - https://docs.habana.ai/en/latest/PyTorch/Getting_Started_with_PyTorch_and_Gaudi/Getting_Started_with_PyTorch.html?highlight=multiprocessing#torch-multiprocessing-for-dataloaders
|
|
if "VLLM_WORKER_MULTIPROC_METHOD" not in os.environ:
|
|
logger.debug("Setting VLLM_WORKER_MULTIPROC_METHOD to 'spawn'")
|
|
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"
|
|
|
|
|
|
def main():
|
|
env_setup()
|
|
|
|
parser = FlexibleArgumentParser(description="vLLM CLI")
|
|
parser.add_argument('-v',
|
|
'--version',
|
|
action='version',
|
|
version=vllm.version.__version__)
|
|
|
|
subparsers = parser.add_subparsers(required=True, dest="subparser")
|
|
|
|
serve_parser = subparsers.add_parser(
|
|
"serve",
|
|
help="Start the vLLM OpenAI Compatible API server",
|
|
usage="vllm serve <model_tag> [options]")
|
|
serve_parser.add_argument("model_tag",
|
|
type=str,
|
|
help="The model tag to serve")
|
|
serve_parser.add_argument(
|
|
"--config",
|
|
type=str,
|
|
default='',
|
|
required=False,
|
|
help="Read CLI options from a config file."
|
|
"Must be a YAML with the following options:"
|
|
"https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#cli-reference"
|
|
)
|
|
|
|
serve_parser = make_arg_parser(serve_parser)
|
|
serve_parser.set_defaults(dispatch_function=serve)
|
|
|
|
complete_parser = subparsers.add_parser(
|
|
"complete",
|
|
help=("Generate text completions based on the given prompt "
|
|
"via the running API server"),
|
|
usage="vllm complete [options]")
|
|
_add_query_options(complete_parser)
|
|
complete_parser.set_defaults(dispatch_function=interactive_cli,
|
|
command="complete")
|
|
|
|
chat_parser = subparsers.add_parser(
|
|
"chat",
|
|
help="Generate chat completions via the running API server",
|
|
usage="vllm chat [options]")
|
|
_add_query_options(chat_parser)
|
|
chat_parser.add_argument(
|
|
"--system-prompt",
|
|
type=str,
|
|
default=None,
|
|
help=("The system prompt to be added to the chat template, "
|
|
"used for models that support system prompts."))
|
|
chat_parser.set_defaults(dispatch_function=interactive_cli, command="chat")
|
|
|
|
args = parser.parse_args()
|
|
if args.subparser == "serve":
|
|
validate_parsed_serve_args(args)
|
|
|
|
# One of the sub commands should be executed.
|
|
if hasattr(args, "dispatch_function"):
|
|
args.dispatch_function(args)
|
|
else:
|
|
parser.print_help()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|