
Signed-off-by: Ce Gao <cegao@tensorchord.ai> Co-authored-by: Rafael Vasquez <rafvasq21@gmail.com> Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com> Co-authored-by: Michael Goin <mgoin@redhat.com>
94 lines
3.3 KiB
Python
94 lines
3.3 KiB
Python
from typing import List, Optional, Tuple, Union
|
|
|
|
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
|
|
DeltaMessage)
|
|
from vllm.entrypoints.openai.reasoning_parsers import ReasoningParser
|
|
|
|
|
|
class StreamingReasoningReconstructor:
|
|
|
|
def __init__(self):
|
|
self.reasoning_content = None
|
|
self.other_content = None
|
|
|
|
def append_delta(self, delta: DeltaMessage):
|
|
# content and the reasoning content should not be present
|
|
# at the same time
|
|
assert delta.content is None or delta.reasoning_content is None, (
|
|
"Both content and reasoning content are present in the "
|
|
"delta message")
|
|
if delta.content is not None:
|
|
if self.other_content is None:
|
|
self.other_content = delta.content
|
|
else:
|
|
self.other_content += delta.content
|
|
else:
|
|
if self.reasoning_content is None:
|
|
self.reasoning_content = delta.reasoning_content
|
|
else:
|
|
self.reasoning_content += delta.reasoning_content
|
|
|
|
|
|
def run_reasoning_extraction(
|
|
reasoning_parser: ReasoningParser,
|
|
model_output: List[str],
|
|
request: Union[ChatCompletionRequest, None] = None,
|
|
streaming: bool = False,
|
|
) -> Tuple[Optional[str], Optional[str]]:
|
|
if streaming:
|
|
reconstructor = run_reasoning_extraction_streaming(
|
|
reasoning_parser,
|
|
model_output,
|
|
request,
|
|
)
|
|
return (
|
|
reconstructor.reasoning_content,
|
|
reconstructor.other_content or None,
|
|
)
|
|
else:
|
|
reasoning, content = run_reasoning_extraction_nonstreaming(
|
|
reasoning_parser, model_output, request)
|
|
return reasoning, content
|
|
|
|
|
|
def run_reasoning_extraction_nonstreaming(
|
|
reasoning_parser: ReasoningParser,
|
|
model_output: List[str],
|
|
request: Union[ChatCompletionRequest, None] = None,
|
|
) -> Tuple[Optional[str], Optional[str]]:
|
|
request = request or ChatCompletionRequest(messages=[], model="test-model")
|
|
return reasoning_parser.extract_reasoning_content(
|
|
model_output=''.join(model_output), request=request)
|
|
|
|
|
|
def run_reasoning_extraction_streaming(
|
|
reasoning_parser: ReasoningParser,
|
|
model_deltas: List[str],
|
|
request: Union[ChatCompletionRequest, None] = None,
|
|
) -> StreamingReasoningReconstructor:
|
|
request = request or ChatCompletionRequest(messages=[], model="test-model")
|
|
reconstructor = StreamingReasoningReconstructor()
|
|
previous_text = ""
|
|
previous_tokens: List[int] = []
|
|
for delta in model_deltas:
|
|
token_delta = [
|
|
reasoning_parser.vocab.get(token)
|
|
for token in reasoning_parser.model_tokenizer.tokenize(delta)
|
|
if token in reasoning_parser.vocab
|
|
]
|
|
current_text = previous_text + delta
|
|
current_tokens = previous_tokens + token_delta
|
|
delta_message = reasoning_parser.extract_reasoning_content_streaming(
|
|
previous_text,
|
|
current_text,
|
|
delta,
|
|
previous_tokens,
|
|
current_tokens,
|
|
token_delta,
|
|
)
|
|
if delta_message is not None:
|
|
reconstructor.append_delta(delta_message)
|
|
previous_text = current_text
|
|
previous_tokens = current_tokens
|
|
return reconstructor
|