vllm/docs/source/models/generative_models.md
Harry Mellor 482cdc494e
[Doc] Rename offline inference examples (#11927)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-01-10 23:50:29 +08:00

127 lines
4.6 KiB
Markdown

(generative-models)=
# Generative Models
vLLM provides first-class support for generative models, which covers most of LLMs.
In vLLM, generative models implement the {class}`~vllm.model_executor.models.VllmModelForTextGeneration` interface.
Based on the final hidden states of the input, these models output log probabilities of the tokens to generate,
which are then passed through {class}`~vllm.model_executor.layers.Sampler` to obtain the final text.
For generative models, the only supported `--task` option is `"generate"`.
Usually, this is automatically inferred so you don't have to specify it.
## Offline Inference
The {class}`~vllm.LLM` class provides various methods for offline inference.
See [Engine Arguments](#engine-args) for a list of options when initializing the model.
### `LLM.generate`
The {class}`~vllm.LLM.generate` method is available to all generative models in vLLM.
It is similar to [its counterpart in HF Transformers](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.generate),
except that tokenization and detokenization are also performed automatically.
```python
llm = LLM(model="facebook/opt-125m")
outputs = llm.generate("Hello, my name is")
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
You can optionally control the language generation by passing {class}`~vllm.SamplingParams`.
For example, you can use greedy sampling by setting `temperature=0`:
```python
llm = LLM(model="facebook/opt-125m")
params = SamplingParams(temperature=0)
outputs = llm.generate("Hello, my name is", params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
A code example can be found here: <gh-file:examples/offline_inference/basic.py>
### `LLM.beam_search`
The {class}`~vllm.LLM.beam_search` method implements [beam search](https://huggingface.co/docs/transformers/en/generation_strategies#beam-search-decoding) on top of {class}`~vllm.LLM.generate`.
For example, to search using 5 beams and output at most 50 tokens:
```python
llm = LLM(model="facebook/opt-125m")
params = BeamSearchParams(beam_width=5, max_tokens=50)
outputs = llm.generate("Hello, my name is", params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
### `LLM.chat`
The {class}`~vllm.LLM.chat` method implements chat functionality on top of {class}`~vllm.LLM.generate`.
In particular, it accepts input similar to [OpenAI Chat Completions API](https://platform.openai.com/docs/api-reference/chat)
and automatically applies the model's [chat template](https://huggingface.co/docs/transformers/en/chat_templating) to format the prompt.
```{important}
In general, only instruction-tuned models have a chat template.
Base models may perform poorly as they are not trained to respond to the chat conversation.
```
```python
llm = LLM(model="meta-llama/Meta-Llama-3-8B-Instruct")
conversation = [
{
"role": "system",
"content": "You are a helpful assistant"
},
{
"role": "user",
"content": "Hello"
},
{
"role": "assistant",
"content": "Hello! How can I assist you today?"
},
{
"role": "user",
"content": "Write an essay about the importance of higher education.",
},
]
outputs = llm.chat(conversation)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
A code example can be found here: <gh-file:examples/offline_inference/chat.py>
If the model doesn't have a chat template or you want to specify another one,
you can explicitly pass a chat template:
```python
from vllm.entrypoints.chat_utils import load_chat_template
# You can find a list of existing chat templates under `examples/`
custom_template = load_chat_template(chat_template="<path_to_template>")
print("Loaded chat template:", custom_template)
outputs = llm.chat(conversation, chat_template=custom_template)
```
## Online Serving
Our [OpenAI-Compatible Server](#openai-compatible-server) provides endpoints that correspond to the offline APIs:
- [Completions API](#completions-api) is similar to `LLM.generate` but only accepts text.
- [Chat API](#chat-api) is similar to `LLM.chat`, accepting both text and [multi-modal inputs](#multimodal-inputs) for models with a chat template.