149 lines
5.3 KiB
Python

import os
from typing import Optional, Union
from transformers import (AutoTokenizer, PreTrainedTokenizer,
PreTrainedTokenizerFast)
from vllm.config import VLLM_USE_MODELSCOPE
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.transformers_utils.tokenizers import BaichuanTokenizer
from vllm.utils import make_async
logger = init_logger(__name__)
def get_cached_tokenizer(
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
"""Get tokenizer with cached properties.
This will patch the tokenizer object in place.
By default, transformers will recompute multiple tokenizer properties
each time they are called, leading to a significant slowdown. This
function caches these properties for faster access."""
tokenizer_all_special_ids = set(tokenizer.all_special_ids)
tokenizer_all_special_tokens_extended = (
tokenizer.all_special_tokens_extended)
tokenizer_all_special_tokens = set(tokenizer.all_special_tokens)
tokenizer_len = len(tokenizer)
class CachedTokenizer(tokenizer.__class__): # type: ignore
@property
def all_special_ids(self):
return tokenizer_all_special_ids
@property
def all_special_tokens(self):
return tokenizer_all_special_tokens
@property
def all_special_tokens_extended(self):
return tokenizer_all_special_tokens_extended
def __len__(self):
return tokenizer_len
CachedTokenizer.__name__ = f"Cached{tokenizer.__class__.__name__}"
tokenizer.__class__ = CachedTokenizer
return tokenizer
def get_tokenizer(
tokenizer_name: str,
*args,
tokenizer_mode: str = "auto",
trust_remote_code: bool = False,
revision: Optional[str] = None,
download_dir: Optional[str] = None,
**kwargs,
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
"""Gets a tokenizer for the given model name via HuggingFace or ModelScope.
"""
if VLLM_USE_MODELSCOPE:
# download model from ModelScope hub,
# lazy import so that modelscope is not required for normal use.
# pylint: disable=C.
from modelscope.hub.snapshot_download import snapshot_download
# Only set the tokenizer here, model will be downloaded on the workers.
if not os.path.exists(tokenizer_name):
tokenizer_path = snapshot_download(
model_id=tokenizer_name,
cache_dir=download_dir,
revision=revision,
# Ignore weights - we only need the tokenizer.
ignore_file_pattern=["*.pt", "*.safetensors", "*.bin"])
tokenizer_name = tokenizer_path
if tokenizer_mode == "slow":
if kwargs.get("use_fast", False):
raise ValueError(
"Cannot use the fast tokenizer in slow tokenizer mode.")
kwargs["use_fast"] = False
try:
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name,
*args,
trust_remote_code=trust_remote_code,
revision=revision,
**kwargs)
except ValueError as e:
# If the error pertains to the tokenizer class not existing or not
# currently being imported, suggest using the --trust-remote-code flag.
if (not trust_remote_code and
("does not exist or is not currently imported." in str(e)
or "requires you to execute the tokenizer file" in str(e))):
err_msg = (
"Failed to load the tokenizer. If the tokenizer is a custom "
"tokenizer not yet available in the HuggingFace transformers "
"library, consider setting `trust_remote_code=True` in LLM "
"or using the `--trust-remote-code` flag in the CLI.")
raise RuntimeError(err_msg) from e
else:
raise e
except AttributeError as e:
if "BaichuanTokenizer" in str(e):
# This is for the error "'BaichuanTokenizer' object has no
# attribute 'sp_model'".
tokenizer = BaichuanTokenizer.from_pretrained(
tokenizer_name,
*args,
trust_remote_code=trust_remote_code,
revision=revision,
**kwargs)
else:
raise e
if not isinstance(tokenizer, PreTrainedTokenizerFast):
logger.warning(
"Using a slow tokenizer. This might cause a significant "
"slowdown. Consider using a fast tokenizer instead.")
return get_cached_tokenizer(tokenizer)
def get_lora_tokenizer(lora_request: LoRARequest, *args,
**kwargs) -> Optional[PreTrainedTokenizer]:
if lora_request is None:
return None
try:
tokenizer = get_tokenizer(lora_request.lora_local_path, *args,
**kwargs)
except OSError as e:
# No tokenizer was found in the LoRA folder,
# use base model tokenizer
logger.warning(
f"No tokenizer found in {lora_request.lora_local_path}, "
"using base model tokenizer instead. "
f"(Exception: {str(e)})")
tokenizer = None
return tokenizer
get_lora_tokenizer_async = make_async(get_lora_tokenizer)