
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
438 lines
18 KiB
Python
438 lines
18 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from typing import Optional
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from tests.kernels.utils import opcheck
|
|
from vllm import _custom_ops as ops # noqa: F401
|
|
from vllm.attention.backends.utils import PAD_SLOT_ID
|
|
from vllm.model_executor.layers.mamba.ops.causal_conv1d import (
|
|
causal_conv1d_fn, causal_conv1d_update)
|
|
from vllm.platforms import current_platform
|
|
|
|
|
|
def causal_conv1d_ref(
|
|
x: torch.Tensor,
|
|
weight: torch.Tensor,
|
|
bias: Optional[torch.Tensor] = None,
|
|
initial_states: Optional[torch.Tensor] = None,
|
|
return_final_states: bool = False,
|
|
final_states_out: Optional[torch.Tensor] = None,
|
|
activation: Optional[str] = "silu",
|
|
):
|
|
"""
|
|
x: (batch, dim, seqlen)
|
|
weight: (dim, width)
|
|
bias: (dim,)
|
|
initial_states: (batch, dim, width - 1)
|
|
final_states_out: (batch, dim, width - 1)
|
|
|
|
out: (batch, dim, seqlen)
|
|
"""
|
|
if activation not in [None, "silu", "swish"]:
|
|
raise NotImplementedError("activation must be None, silu, or swish")
|
|
dtype_in = x.dtype
|
|
x = x.to(weight.dtype)
|
|
seqlen = x.shape[-1]
|
|
dim, width = weight.shape
|
|
if initial_states is None:
|
|
out = F.conv1d(x,
|
|
weight.unsqueeze(1),
|
|
bias,
|
|
padding=width - 1,
|
|
groups=dim)
|
|
else:
|
|
x = torch.cat([initial_states, x], dim=-1)
|
|
out = F.conv1d(x, weight.unsqueeze(1), bias, padding=0, groups=dim)
|
|
out = out[..., :seqlen]
|
|
if return_final_states:
|
|
final_states = F.pad(x, (width - 1 - x.shape[-1], 0)).to(
|
|
dtype_in) # (batch, dim, width - 1)
|
|
if final_states_out is not None:
|
|
final_states_out.copy_(final_states)
|
|
else:
|
|
final_states_out = final_states
|
|
out = (out if activation is None else F.silu(out)).to(dtype=dtype_in)
|
|
return (out, None) if not return_final_states else (out, final_states_out)
|
|
|
|
|
|
def causal_conv1d_update_ref(x,
|
|
conv_state,
|
|
weight,
|
|
bias=None,
|
|
activation=None,
|
|
cache_seqlens=None):
|
|
"""
|
|
x: (batch, dim) or (batch, dim, seqlen)
|
|
conv_state: (batch, dim, state_len), where state_len >= width - 1
|
|
weight: (dim, width)
|
|
bias: (dim,)
|
|
cache_seqlens: (batch,), dtype int32.
|
|
If not None, the conv_state is treated as a circular buffer.
|
|
The conv_state will be updated by copying x to the
|
|
conv_state starting at the index
|
|
@cache_seqlens % state_len before performing the convolution.
|
|
|
|
out: (batch, dim) or (batch, dim, seqlen)
|
|
"""
|
|
if activation not in [None, "silu", "swish"]:
|
|
raise NotImplementedError("activation must be None, silu, or swish")
|
|
dtype_in = x.dtype
|
|
unsqueeze = x.dim() == 2
|
|
if unsqueeze:
|
|
x = x.unsqueeze(-1)
|
|
batch, dim, seqlen = x.shape
|
|
width = weight.shape[1]
|
|
state_len = conv_state.shape[-1]
|
|
assert conv_state.shape == (batch, dim, state_len)
|
|
assert weight.shape == (dim, width)
|
|
if cache_seqlens is None:
|
|
x_new = torch.cat([conv_state, x], dim=-1).to(
|
|
weight.dtype) # (batch, dim, state_len + seqlen)
|
|
conv_state.copy_(x_new[:, :, -state_len:])
|
|
else:
|
|
width_idx = torch.arange(
|
|
-(width - 1), 0, dtype=torch.long,
|
|
device=x.device).unsqueeze(0) + cache_seqlens.unsqueeze(1)
|
|
width_idx = torch.remainder(width_idx, state_len).unsqueeze(1).expand(
|
|
-1, dim, -1)
|
|
x_new = torch.cat([conv_state.gather(2, width_idx), x],
|
|
dim=-1).to(weight.dtype)
|
|
copy_idx = torch.arange(
|
|
seqlen, dtype=torch.long,
|
|
device=x.device).unsqueeze(0) + cache_seqlens.unsqueeze(1)
|
|
copy_idx = torch.remainder(copy_idx,
|
|
state_len).unsqueeze(1).expand(-1, dim, -1)
|
|
conv_state.scatter_(2, copy_idx, x)
|
|
out = F.conv1d(x_new, weight.unsqueeze(1), bias, padding=0,
|
|
groups=dim)[:, :, -seqlen:]
|
|
if unsqueeze:
|
|
out = out.squeeze(-1)
|
|
return (out if activation is None else F.silu(out)).to(dtype=dtype_in)
|
|
|
|
|
|
@pytest.mark.parametrize("itype", [torch.bfloat16, torch.float])
|
|
@pytest.mark.parametrize("silu_activation", [True])
|
|
@pytest.mark.parametrize("has_bias", [True])
|
|
def causal_conv1d_opcheck_fn(x: torch.Tensor,
|
|
weight: torch.Tensor,
|
|
bias: Optional[torch.Tensor] = None,
|
|
cu_seq_len: Optional[torch.Tensor] = None,
|
|
cache_indices: Optional[torch.Tensor] = None,
|
|
has_initial_state: Optional[torch.Tensor] = None,
|
|
conv_states: Optional[torch.Tensor] = None,
|
|
activation: Optional[str] = "silu",
|
|
pad_slot_id: int = PAD_SLOT_ID):
|
|
"""
|
|
x: (batch, dim, seqlen)
|
|
weight: (dim, width)
|
|
bias: (dim,)
|
|
seq_idx: (batch, seqlen)
|
|
initial_states: (batch, dim, width - 1)
|
|
final_states_out: (batch, dim, width - 1), to be written to
|
|
activation: either None or "silu" or "swish"
|
|
|
|
out: (batch, dim, seqlen)
|
|
"""
|
|
if activation not in [None, "silu", "swish"]:
|
|
raise NotImplementedError("activation must be None, silu, or swish")
|
|
if x.stride(-1) != 1:
|
|
x = x.contiguous()
|
|
bias = bias.contiguous() if bias is not None else None
|
|
|
|
opcheck(torch.ops._C.causal_conv1d_fwd,
|
|
(x, weight, bias, conv_states, cu_seq_len, cache_indices,
|
|
has_initial_state, activation in ["silu", "swish"], pad_slot_id))
|
|
|
|
|
|
@pytest.mark.parametrize("itype", [torch.bfloat16, torch.float])
|
|
@pytest.mark.parametrize("silu_activation", [True])
|
|
@pytest.mark.parametrize("has_bias", [True])
|
|
@pytest.mark.parametrize("has_initial_state", [True, False])
|
|
@pytest.mark.parametrize("width", [4])
|
|
@pytest.mark.parametrize(
|
|
'seqlen', [1, 8, 16, 32, 64, 128, 256, 512, 784, 1024, 1025, 2048, 4096])
|
|
@pytest.mark.parametrize('dim', [64])
|
|
@pytest.mark.parametrize('batch', [1])
|
|
def test_causal_conv1d(batch, dim, seqlen, width, has_bias, silu_activation,
|
|
has_initial_state, itype):
|
|
device = "cuda"
|
|
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
|
|
if itype == torch.bfloat16:
|
|
rtol, atol = 1e-2, 5e-2
|
|
# set seed
|
|
current_platform.seed_everything(0)
|
|
x = torch.randn(batch, dim, seqlen, device=device,
|
|
dtype=itype).contiguous()
|
|
|
|
weight = torch.randn(dim, width, device=device, dtype=itype)
|
|
bias = torch.randn(dim, device=device, dtype=itype) if has_bias else None
|
|
if has_initial_state:
|
|
initial_states = torch.randn(batch,
|
|
dim,
|
|
width - 1,
|
|
device=device,
|
|
dtype=itype)
|
|
has_initial_state_tensor = torch.ones(batch,
|
|
dtype=torch.bool,
|
|
device=x.device)
|
|
else:
|
|
initial_states = None
|
|
has_initial_state_tensor = None
|
|
x_ref = x.clone()
|
|
weight_ref = weight.clone()
|
|
bias_ref = bias.clone() if bias is not None else None
|
|
initial_states_ref = initial_states.clone(
|
|
) if initial_states is not None else None
|
|
activation = None if not silu_activation else "silu"
|
|
out = causal_conv1d_fn(x,
|
|
weight,
|
|
bias,
|
|
activation=activation,
|
|
conv_states=initial_states,
|
|
has_initial_state=has_initial_state_tensor)
|
|
out_ref, final_states_ref = causal_conv1d_ref(
|
|
x_ref,
|
|
weight_ref,
|
|
bias_ref,
|
|
initial_states=initial_states_ref,
|
|
return_final_states=True,
|
|
activation=activation)
|
|
if has_initial_state:
|
|
assert initial_states is not None and final_states_ref is not None
|
|
assert torch.allclose(initial_states,
|
|
final_states_ref,
|
|
rtol=rtol,
|
|
atol=atol)
|
|
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
|
|
|
|
causal_conv1d_opcheck_fn(x,
|
|
weight,
|
|
bias,
|
|
activation=activation,
|
|
conv_states=initial_states,
|
|
has_initial_state=has_initial_state_tensor)
|
|
|
|
|
|
@pytest.mark.parametrize("itype", [torch.bfloat16])
|
|
@pytest.mark.parametrize("silu_activation", [False, True])
|
|
@pytest.mark.parametrize("has_bias", [False, True])
|
|
@pytest.mark.parametrize("seqlen", [1])
|
|
@pytest.mark.parametrize("width", [4])
|
|
@pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096])
|
|
def test_causal_conv1d_update(dim, width, seqlen, has_bias, silu_activation,
|
|
itype):
|
|
device = "cuda"
|
|
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
|
|
if itype == torch.bfloat16:
|
|
rtol, atol = 1e-2, 5e-2
|
|
# set seed
|
|
current_platform.seed_everything(0)
|
|
batch = 2
|
|
x = torch.randn(batch, dim, seqlen, device=device, dtype=itype)
|
|
x_ref = x.clone()
|
|
conv_state = torch.randn(batch, dim, width - 1, device=device, dtype=itype)
|
|
|
|
weight = torch.randn(dim, width, device=device, dtype=itype)
|
|
bias = torch.randn(dim, device=device, dtype=itype) if has_bias else None
|
|
conv_state_ref = conv_state.detach().clone()
|
|
activation = None if not silu_activation else "silu"
|
|
out = causal_conv1d_update(x,
|
|
conv_state,
|
|
weight,
|
|
bias,
|
|
activation=activation)
|
|
out_ref = causal_conv1d_update_ref(x_ref,
|
|
conv_state_ref,
|
|
weight,
|
|
bias,
|
|
activation=activation)
|
|
|
|
assert torch.equal(conv_state, conv_state_ref)
|
|
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
|
|
|
|
opcheck(torch.ops._C.causal_conv1d_update,
|
|
(x, conv_state, weight, bias, activation
|
|
in ["silu", "swish"], None, None, PAD_SLOT_ID))
|
|
|
|
|
|
@pytest.mark.parametrize("itype",
|
|
[torch.float32, torch.float16, torch.bfloat16])
|
|
@pytest.mark.parametrize("silu_activation", [False, True])
|
|
@pytest.mark.parametrize("has_bias", [False, True])
|
|
@pytest.mark.parametrize("seqlen", [1, 4, 5])
|
|
@pytest.mark.parametrize("width", [2, 3, 4])
|
|
@pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096])
|
|
# tests correctness in case subset of the sequences are padded
|
|
@pytest.mark.parametrize("with_padding", [True, False])
|
|
def test_causal_conv1d_update_with_batch_gather(with_padding, dim, width,
|
|
seqlen, has_bias,
|
|
silu_activation, itype):
|
|
device = "cuda"
|
|
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
|
|
if itype == torch.bfloat16:
|
|
rtol, atol = 1e-2, 5e-2
|
|
|
|
# set seed
|
|
current_platform.seed_everything(0)
|
|
|
|
batch_size = 3
|
|
padding = 5 if with_padding else 0
|
|
padded_batch_size = batch_size + padding
|
|
total_entries = 10 * batch_size
|
|
|
|
x = torch.randn(padded_batch_size, dim, 1, device=device, dtype=itype)
|
|
x_ref = x.clone()
|
|
|
|
conv_state_indices = torch.randperm(total_entries)[:batch_size].to(
|
|
dtype=torch.int32, device=device)
|
|
unused_states_bool = torch.ones(total_entries,
|
|
dtype=torch.bool,
|
|
device=device)
|
|
unused_states_bool[conv_state_indices] = False
|
|
padded_state_indices = torch.concat([
|
|
conv_state_indices,
|
|
torch.as_tensor(
|
|
[PAD_SLOT_ID] * padding, dtype=torch.int32, device=device)
|
|
],
|
|
dim=0)
|
|
conv_state = torch.randn(total_entries,
|
|
dim,
|
|
width - 1,
|
|
device=device,
|
|
dtype=itype)
|
|
conv_state_for_padding_test = conv_state.clone()
|
|
|
|
weight = torch.randn(dim, width, device=device, dtype=itype)
|
|
bias = torch.randn(dim, device=device, dtype=itype) if has_bias else None
|
|
conv_state_ref = conv_state[conv_state_indices, :].detach().clone()
|
|
activation = None if not silu_activation else "silu"
|
|
out = causal_conv1d_update(x,
|
|
conv_state,
|
|
weight,
|
|
bias,
|
|
activation=activation,
|
|
conv_state_indices=padded_state_indices,
|
|
pad_slot_id=PAD_SLOT_ID)
|
|
out_ref = causal_conv1d_update_ref(x_ref[:batch_size],
|
|
conv_state_ref,
|
|
weight,
|
|
bias,
|
|
activation=activation)
|
|
|
|
assert torch.equal(conv_state[conv_state_indices, :], conv_state_ref)
|
|
assert torch.allclose(out[:batch_size], out_ref, rtol=rtol, atol=atol)
|
|
assert torch.equal(conv_state[unused_states_bool],
|
|
conv_state_for_padding_test[unused_states_bool])
|
|
|
|
opcheck(torch.ops._C.causal_conv1d_update,
|
|
(x, conv_state, weight, bias, activation
|
|
in ["silu", "swish"], None, padded_state_indices, PAD_SLOT_ID))
|
|
|
|
|
|
@pytest.mark.parametrize("itype", [torch.bfloat16])
|
|
@pytest.mark.parametrize("silu_activation", [True])
|
|
@pytest.mark.parametrize("has_bias", [True])
|
|
@pytest.mark.parametrize("width", [4])
|
|
@pytest.mark.parametrize(
|
|
'seqlen', [8, 16, 32, 64, 128, 256, 512, 784, 1024, 2048, 2049, 4096])
|
|
@pytest.mark.parametrize('dim', [64, 4096])
|
|
# tests correctness in case subset of the sequences are padded
|
|
@pytest.mark.parametrize('with_padding', [True, False])
|
|
def test_causal_conv1d_varlen(with_padding, dim, seqlen, width, has_bias,
|
|
silu_activation, itype):
|
|
device = "cuda"
|
|
torch.cuda.empty_cache()
|
|
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
|
|
if itype == torch.bfloat16:
|
|
rtol, atol = 1e-2, 5e-2
|
|
# set seed
|
|
current_platform.seed_everything(0)
|
|
seqlens = []
|
|
batch_size = 4
|
|
if seqlen < 10:
|
|
batch_size = 1
|
|
padding = 3 if with_padding else 0
|
|
padded_batch_size = batch_size + padding
|
|
nsplits = padded_batch_size - 1
|
|
|
|
eos_pos = torch.randperm(seqlen - 1)[:nsplits].sort().values
|
|
seqlens.append(
|
|
torch.diff(
|
|
torch.cat(
|
|
[torch.tensor([-1]), eos_pos,
|
|
torch.tensor([seqlen - 1])])).tolist())
|
|
assert sum(seqlens[-1]) == seqlen
|
|
assert all(s > 0 for s in seqlens[-1])
|
|
|
|
total_entries = batch_size * 10
|
|
cumsum = torch.cumsum(torch.tensor(seqlens[0]), dim=0).to(torch.int32)
|
|
cumsum = torch.concat([torch.tensor([0], dtype=torch.int32), cumsum],
|
|
dim=0)
|
|
x = torch.randn(1, 4096 + dim + 64, seqlen, device=device,
|
|
dtype=itype)[:, 4096:4096 + dim, :]
|
|
weight = torch.randn(dim, width, device=device, dtype=itype)
|
|
bias = torch.randn(dim, device=device, dtype=itype) if has_bias else None
|
|
x_ref = x.clone()
|
|
weight_ref = weight.clone()
|
|
bias_ref = bias.clone() if bias is not None else None
|
|
activation = None if not silu_activation else "silu"
|
|
final_states = torch.randn(total_entries,
|
|
dim,
|
|
width - 1,
|
|
device=x.device,
|
|
dtype=x.dtype)
|
|
final_states_ref = final_states.clone()
|
|
has_initial_states = torch.randint(0,
|
|
2, (cumsum.shape[0] - 1, ),
|
|
dtype=torch.bool,
|
|
device=x.device)
|
|
state_indices = torch.randperm(total_entries,
|
|
dtype=torch.int32,
|
|
device=x.device)[:batch_size]
|
|
padded_state_indices = torch.concat([
|
|
state_indices,
|
|
torch.as_tensor(
|
|
[PAD_SLOT_ID] * padding, dtype=torch.int32, device=device),
|
|
],
|
|
dim=-1)
|
|
|
|
out = causal_conv1d_fn(x.squeeze(0), weight, bias, cumsum.cuda(),
|
|
padded_state_indices, has_initial_states,
|
|
final_states, activation, PAD_SLOT_ID)
|
|
out_ref = []
|
|
out_ref_b = []
|
|
|
|
splits = [torch.split(var, seqlens[0], dim=-1) for var in (x_ref)]
|
|
for i in range(len(seqlens[0])):
|
|
x_s = [v[i].unsqueeze(0) for v in splits][0]
|
|
if padded_state_indices[i] == PAD_SLOT_ID:
|
|
continue
|
|
out_ref_b.append(
|
|
causal_conv1d_ref(
|
|
x_s,
|
|
weight_ref,
|
|
bias_ref,
|
|
activation=activation,
|
|
return_final_states=True,
|
|
final_states_out=final_states_ref[
|
|
padded_state_indices[i]].unsqueeze(0),
|
|
initial_states=final_states_ref[padded_state_indices[i]].
|
|
unsqueeze(0) if has_initial_states[i] else None))
|
|
out_ref.append(torch.cat([t[0] for t in out_ref_b], dim=2))
|
|
out_ref_tensor = torch.cat(out_ref, dim=0)
|
|
|
|
unpadded_out = out[:, :out_ref_tensor.shape[-1]]
|
|
assert torch.allclose(unpadded_out, out_ref_tensor, rtol=rtol, atol=atol)
|
|
assert torch.allclose(final_states[state_indices],
|
|
final_states_ref[state_indices],
|
|
rtol=rtol,
|
|
atol=atol)
|
|
|
|
causal_conv1d_opcheck_fn(x.squeeze(0), weight, bias, cumsum.cuda(),
|
|
padded_state_indices, has_initial_states,
|
|
final_states, activation)
|