2025-04-09 20:07:40 -07:00

571 lines
23 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# Adapted from
# https://github.com/ROCm/vllm/blob/cea7419f151cc50293a05b7fac8547f8f887c9f6/vllm/model_executor/models/grok1.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Grok1 model."""
from typing import Iterable, List, Optional, Set, Tuple, Union
import torch
import torch.nn.functional as F
from torch import nn
from vllm.attention import Attention, AttentionMetadata
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader, maybe_remap_kv_scale_name)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsLoRA, SupportsPP
from .utils import (AutoWeightsLoader, is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)
# Default Grok1-specific constants, overridden by config values if present
DEFAULT_ATTN_OUTPUT_MULTIPLIER = 0.08838834764831845
DEFAULT_OUTPUT_MULTIPLIER_SCALE = 0.5773502691896257
DEFAULT_EMBEDDING_MULTIPLIER_SCALE = 78.38367176906169
class Grok1MoE(nn.Module):
"""A tensor-parallel MoE implementation for Grok1 that shards each expert
across all ranks.
Each expert's weights are sharded across all ranks and a fused MoE
kernel is used for the forward pass, and finally we reduce the outputs
across ranks.
"""
def __init__(self,
num_experts: int,
top_k: int,
hidden_size: int,
intermediate_size: int,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
tp_size: Optional[int] = None,
prefix: str = ""):
super().__init__()
self.hidden_size = hidden_size
# Gate always runs at half / full precision for now.
self.gate = ReplicatedLinear(hidden_size,
num_experts,
bias=False,
params_dtype=params_dtype,
quant_config=None,
prefix=f"{prefix}.gate")
self.experts = FusedMoE(num_experts=num_experts,
top_k=top_k,
hidden_size=hidden_size,
intermediate_size=intermediate_size,
params_dtype=params_dtype,
reduce_results=True,
renormalize=True,
quant_config=quant_config,
tp_size=tp_size,
activation="gelu",
prefix=f"{prefix}.experts")
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# NOTE: hidden_states can have either 1D or 2D shape.
orig_shape = hidden_states.shape
hidden_states = hidden_states.view(-1, self.hidden_size)
# router_logits: (num_tokens, n_experts)
router_logits, _ = self.gate(hidden_states)
router_logits = 30.0 * F.tanh(router_logits / 30.0)
final_hidden_states = self.experts(hidden_states, router_logits)
return final_hidden_states.view(orig_shape)
class Grok1Attention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
max_position: int = 4096 * 32,
rope_theta: float = 10000,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
config=None, # Added config parameter
) -> None:
super().__init__()
self.hidden_size = hidden_size
self.config = config # Store config reference
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position,
base=int(self.rope_theta),
is_neox_style=True,
)
attn_logits_soft_cap = max(
getattr(config, "attn_logit_softcapping", 30.0), 0.0)
self.attn = Attention(self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
logits_soft_cap=attn_logits_soft_cap,
prefix=f"{prefix}.attn")
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
output, _ = self.o_proj(attn_output)
# Apply attention output multiplier if specified in config
attn_multiplier = getattr(self.config, "attn_output_multiplier",
None) if self.config else None
if attn_multiplier is not None:
output = output * attn_multiplier
return output
class Grok1DecoderLayer(nn.Module):
def __init__(
self,
config,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
# Check for fp8 quantization
self.use_fp8 = False
if quant_config is not None:
self.use_fp8 = getattr(quant_config, "is_fp8_w8a8",
lambda: False)()
if not self.use_fp8 and hasattr(quant_config, "is_fp8"):
self.use_fp8 = quant_config.is_fp8
# Requires transformers > 4.32.0
# Default rope_theta value if not in config
rope_theta = 10000
self.attn = Grok1Attention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
max_position=config.max_position_embeddings,
num_kv_heads=config.num_key_value_heads,
rope_theta=rope_theta,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
config=config) # Pass config to Grok1Attention
# Grok1 uses "num_experts" in its config
num_experts = getattr(config, "num_experts", 8)
num_experts_per_tok = getattr(config, "num_experts_per_tok", 2)
self.moe_block = Grok1MoE(num_experts=num_experts,
top_k=num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
quant_config=quant_config,
prefix=f"{prefix}.moe_block")
self.pre_attn_norm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attn_norm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.pre_moe_norm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_moe_norm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.pre_attn_norm(hidden_states)
else:
hidden_states, residual = self.pre_attn_norm(
hidden_states, residual)
hidden_states = self.attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
)
# Post attention normalization
hidden_states = self.post_attn_norm(hidden_states)
# MoE block with normalization
hidden_states, residual = self.pre_moe_norm(hidden_states, residual)
hidden_states = self.moe_block(hidden_states)
hidden_states = self.post_moe_norm(hidden_states)
return hidden_states, residual
@support_torch_compile
class Grok1Model(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
self.quant_config = quant_config
self.padding_idx = config.pad_token_id
lora_vocab = (lora_config.lora_extra_vocab_size *
(lora_config.max_loras or 1)) if lora_config else 0
self.vocab_size = config.vocab_size + lora_vocab
self.org_vocab_size = config.vocab_size
self.embedding_multiplier_scale = getattr(
config, "embedding_multiplier_scale",
DEFAULT_EMBEDDING_MULTIPLIER_SCALE)
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
quant_config=quant_config,
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: Grok1DecoderLayer(
config, cache_config, quant_config=quant_config, prefix=prefix
),
prefix=f"{prefix}.layers")
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
hidden_states = hidden_states * self.embedding_multiplier_scale
return hidden_states
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for i in range(self.start_layer, self.end_layer):
layer = self.layers[i]
hidden_states, residual = layer(positions, hidden_states,
kv_caches[i - self.start_layer],
attn_metadata, residual)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
# Map Grok1's unique expert parameter names to standard names
# Grok1 uses "num_experts" in its config
num_experts = getattr(self.config, "num_experts", 8)
expert_params_mapping = FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="linear", # Grok1 specific
ckpt_down_proj_name="linear_1", # Grok1 specific
ckpt_up_proj_name="linear_v", # Grok1 specific
num_experts=num_experts)
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
if (self.quant_config is not None and
(scale_name := self.quant_config.get_cache_scale(name))):
# Loading kv cache quantization scales
param = params_dict[scale_name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
loaded_weight[0])
weight_loader(param, loaded_weight)
loaded_params.add(scale_name)
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if ((name.endswith(".bias") or name.endswith("_bias"))
and name not in params_dict):
continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
if name.endswith("scale"):
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
if ((name.endswith(".bias") or name.endswith("_bias"))
and name not in params_dict):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param,
loaded_weight,
name,
shard_id=shard_id,
expert_id=expert_id)
break
else:
# Skip loading extra bias for GPTQ models.
if ((name.endswith(".bias") or name.endswith("_bias"))
and name not in params_dict):
continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
# Handle Grok1-specific norm.scale naming
if "norm.scale" in name:
name = name.replace("scale", "weight")
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class Grok1ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
fall_back_to_pt_during_load = False
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
self.lora_config = lora_config
self.quant_config = quant_config
self.model = Grok1Model(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
self.unpadded_vocab_size = config.vocab_size
if lora_config:
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE
# We need bigger padding if using lora for kernel compatibility
if not lora_config else lora_config.lora_vocab_padding_size,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
if self.config.tie_word_embeddings:
self.lm_head.weight = self.model.embed_tokens.weight
self.output_multiplier_scale = getattr(
config, "output_multiplier_scale", DEFAULT_OUTPUT_MULTIPLIER_SCALE)
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
config.vocab_size,
self.output_multiplier_scale)
self.sampler = get_sampler()
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: Optional[torch.Tensor],
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
skip_prefixes = ["rotary_emb.inv_freq"]
# Skip lm_head when tie_word_embeddings is True
if self.config.tie_word_embeddings:
skip_prefixes.append("lm_head")
loader = AutoWeightsLoader(self, skip_prefixes=skip_prefixes)
return loader.load_weights(weights)