vllm/vllm/v1/engine/processor.py
Vincent a4f1ee35d6
Deprecate best_of Sampling Parameter in anticipation for vLLM V1 (#13997)
Signed-off-by: vincent-4 <vincentzhongy+githubvincent4@gmail.com>
Signed-off-by: Brayden Zhong <b8zhong@uwaterloo.ca>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Brayden Zhong <b8zhong@uwaterloo.ca>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-05 20:22:43 +00:00

314 lines
13 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import time
from collections.abc import Mapping
from typing import Optional, Union
from vllm.config import CacheConfig, LoRAConfig, ModelConfig
from vllm.inputs import (INPUT_REGISTRY, InputRegistry, ProcessorInputs,
PromptType, SingletonInputsAdapter)
from vllm.inputs.parse import is_encoder_decoder_inputs
from vllm.inputs.preprocess import InputPreprocessor
from vllm.lora.request import LoRARequest
from vllm.multimodal import (MULTIMODAL_REGISTRY, MultiModalHasher,
MultiModalKwargs, MultiModalRegistry)
from vllm.multimodal.utils import merge_and_sort_multimodal_metadata
from vllm.pooling_params import PoolingParams
from vllm.prompt_adapter.request import PromptAdapterRequest
from vllm.sampling_params import SamplingParams
from vllm.transformers_utils.tokenizer_group import BaseTokenizerGroup
from vllm.v1.engine import EngineCoreRequest
from vllm.v1.engine.mm_input_cache import MMInputCacheClient
class Processor:
def __init__(
self,
model_config: ModelConfig,
cache_config: CacheConfig,
lora_config: Optional[LoRAConfig],
tokenizer: BaseTokenizerGroup,
input_registry: InputRegistry = INPUT_REGISTRY,
mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
):
self.model_config = model_config
self.cache_config = cache_config
self.lora_config = lora_config
self.tokenizer = tokenizer
self.generation_config_fields = model_config.try_get_generation_config(
)
self.input_preprocessor = InputPreprocessor(model_config,
self.tokenizer,
mm_registry)
self.input_processor = input_registry.create_input_processor(
model_config)
# Multi-modal (huggingface) input mapper
self.mm_input_cache_client = MMInputCacheClient(model_config)
# Multi-modal hasher (for images)
self.use_hash = (not model_config.disable_mm_preprocessor_cache) or \
cache_config.enable_prefix_caching
def _validate_logprobs(
self,
params: SamplingParams,
) -> None:
max_logprobs = self.model_config.max_logprobs
# Validate sample logprobs.
if params.logprobs and params.logprobs > max_logprobs:
raise ValueError(
f"Requested sample logprobs of {params.logprobs}, "
f"which is greater than max allowed: {max_logprobs}")
# Validate prompt logprobs.
if params.prompt_logprobs and params.prompt_logprobs > max_logprobs:
raise ValueError(
f"Requested prompt logprobs of {params.prompt_logprobs}, "
f"which is greater than max allowed: {max_logprobs}")
# TODO(andy): enable this in follow up by recomputing.
if (params.prompt_logprobs is not None
and self.cache_config.enable_prefix_caching):
raise ValueError("Prefix caching with prompt logprobs not yet "
"supported on VLLM V1.")
def _validate_sampling_params(
self,
params: SamplingParams,
) -> None:
if params.allowed_token_ids is None:
return
if not params.allowed_token_ids:
raise ValueError("allowed_token_ids is not None and empty!")
vocab_size = self.model_config.get_vocab_size()
if not all(0 <= tid < vocab_size for tid in params.allowed_token_ids):
raise ValueError(
"allowed_token_ids contains out-of-vocab token id!")
def _validate_supported_sampling_params(
self,
params: SamplingParams,
) -> None:
# Bad words not yet supported.
if params.bad_words:
raise ValueError("VLLM V1 does not yet support bad_words.")
# Logits processors not supported.
if params.logits_processors:
raise ValueError("VLLM V1 does not support per request "
"user provided logits processors.")
def _validate_params(
self,
params: Union[SamplingParams, PoolingParams],
):
"""
Validate supported SamplingParam.
Should raise ValueError if unsupported for API Server.
"""
if not isinstance(params, SamplingParams):
raise ValueError("V1 does not yet support Pooling models.")
self._validate_logprobs(params)
self._validate_sampling_params(params)
self._validate_supported_sampling_params(params)
def _validate_lora(self, lora_request: Optional[LoRARequest]) -> None:
if lora_request is not None and not self.lora_config:
raise ValueError(f"Got lora_request {lora_request} but LoRA is "
"not enabled!")
def process_inputs(
self,
request_id: str,
prompt: PromptType,
params: Union[SamplingParams, PoolingParams],
arrival_time: Optional[float] = None,
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
priority: int = 0,
) -> EngineCoreRequest:
# TODO(woosuk): Support pooling models.
# TODO(woosuk): Support encoder-decoder models.
self._validate_lora(lora_request)
self._validate_params(params)
if priority != 0:
raise ValueError("V1 does not support priority yet.")
if trace_headers is not None:
raise ValueError("V1 does not support tracing yet.")
if prompt_adapter_request is not None:
raise ValueError("V1 does not support prompt_adapter_request.")
if arrival_time is None:
arrival_time = time.time()
# Process inputs, which includes:
# 1. Tokenize text prompt, with LoRA request if one exists.
# 2. For multimodal models with a merged preprocessor, preprocess
# multimodal data and expand prompt token ids accordingly.
# 3. Apply prompt adapter to prompt token ids if one exists.
preprocessed_inputs = self.input_preprocessor.preprocess(
prompt,
request_id=request_id,
lora_request=lora_request,
prompt_adapter_request=prompt_adapter_request,
return_mm_hashes=self.use_hash,
)
eos_token_id = self.input_preprocessor.get_eos_token_id(lora_request)
# Process prompt and prompt token ids.
# Only applicable to multimodal models with legacy input processor.
processed_inputs = self.input_processor(preprocessed_inputs)
self._validate_model_inputs(processed_inputs)
if is_encoder_decoder_inputs(processed_inputs):
decoder_inputs = SingletonInputsAdapter(
processed_inputs["decoder"])
encoder_inputs = SingletonInputsAdapter(
processed_inputs["encoder"])
else:
decoder_inputs = SingletonInputsAdapter(processed_inputs)
encoder_inputs = None
# TODO: Impl encoder-decoder
if encoder_inputs is not None:
raise NotImplementedError
assert isinstance(params, SamplingParams)
# TODO: can we avoid cloning here in multiproc case
sampling_params = params.clone()
sampling_params.update_from_generation_config(
self.generation_config_fields, eos_token_id)
# Multimodal related.
# Compute MM hashes (if enabled)
mm_hashes = None
if self.use_hash:
# Use mm_hashes from processed inputs if the model has merged
# input processor.
if decoder_inputs.multi_modal_hashes:
mm_hashes = decoder_inputs.multi_modal_hashes
# Fallback to using MultiModalHasher directly.
else:
mm_hashes = MultiModalHasher.hash_prompt_mm_data(prompt)
# For merged preprocessor, mm_data is already mm_inputs
precomputed_mm_inputs: Optional[list[MultiModalKwargs]] = None
decoder_mm_data = decoder_inputs.multi_modal_data
if isinstance(decoder_mm_data, MultiModalKwargs):
# The output of merged multi-modal processor (`decoder_mm_data`)
# contains the kwargs for all items from all modalities.
# This code separates them so that there is one set of kwargs
# per item per modality.
precomputed_mm_inputs = [
MultiModalKwargs.from_items([item])
for modality in decoder_mm_data.modalities
for item in decoder_mm_data.get_items(modality)
]
mm_positions = decoder_inputs.multi_modal_placeholders
# Last-mile processing of multimodal metadata and inputs.
if mm_positions:
# Merge and flatten multimodal placeholders, hashes and inputs
# from dictionaries to lists, and sort them by each item's position
# in the input sequence.
# NOTE: interleaved modalities are not supported.
(
sorted_modalities,
sorted_mm_positions,
sorted_mm_hashes,
) = merge_and_sort_multimodal_metadata(
mm_positions,
mm_hashes,
)
# NOTE: Sort multimodal inputs/kwargs ONLY IF there are multiple
# modalities involved AND the model supports merged input processor.
if len(sorted_modalities) > 1 and precomputed_mm_inputs:
modality_order_dict = {
modality: order
for order, modality in enumerate(sorted_modalities)
}
# Sanity check to make sure each multimodal input has only one
# modality key.
for mm_input in precomputed_mm_inputs:
assert len(mm_input.modalities) == 1
# Sort MultiModalKwags to match sorted_mm_positions
precomputed_mm_inputs = sorted(
precomputed_mm_inputs,
key=lambda mm_input: modality_order_dict[list(
mm_input.modalities)[0]])
# Apply mm input cache update and legacy input mapper if one exists.
sorted_mm_inputs = self.mm_input_cache_client.process_inputs(
mm_data=decoder_mm_data,
mm_hashes=sorted_mm_hashes,
mm_processor_kwargs=decoder_inputs.mm_processor_kwargs,
precomputed_mm_inputs=precomputed_mm_inputs,
)
else:
sorted_mm_inputs = None
sorted_mm_hashes = None
sorted_mm_positions = None
return EngineCoreRequest(
request_id=request_id,
prompt=decoder_inputs.prompt,
prompt_token_ids=decoder_inputs.prompt_token_ids,
mm_inputs=sorted_mm_inputs,
mm_hashes=sorted_mm_hashes,
mm_placeholders=sorted_mm_positions,
sampling_params=sampling_params,
eos_token_id=eos_token_id,
arrival_time=arrival_time,
lora_request=lora_request,
)
def _validate_model_inputs(self, inputs: ProcessorInputs):
if is_encoder_decoder_inputs(inputs):
# For encoder-decoder multimodal models, the max_prompt_len
# restricts the decoder prompt length
prompt_inputs = inputs["decoder" if self.model_config.
is_multimodal_model else "encoder"]
else:
prompt_inputs = inputs
prompt_ids = SingletonInputsAdapter(prompt_inputs).prompt_token_ids
if prompt_ids is None or len(prompt_ids) == 0:
raise ValueError("Prompt cannot be empty")
if len(prompt_ids) >= self.model_config.max_model_len:
raise ValueError(
f"Prompt length of {len(prompt_ids)} is longer than the "
f"maximum model length of {self.model_config.max_model_len}.")
if self.model_config.is_multimodal_model:
max_prompt_len = self.model_config.max_model_len
if len(prompt_ids) > max_prompt_len:
raise ValueError(
f"The prompt (total length {len(prompt_ids)}) is too long "
f"to fit into the model (context length {max_prompt_len}). "
"Make sure that `max_model_len` is no smaller than the "
"number of text tokens plus multimodal tokens. For image "
"inputs, the number of image tokens depends on the number "
"of images, and possibly their aspect ratios as well.")
# TODO: Find out how many placeholder tokens are there so we can
# check that chunked prefill does not truncate them
# max_batch_len = self.scheduler_config.max_num_batched_tokens