vllm/cacheflow/worker/cache_engine.py
2023-03-21 13:45:42 -07:00

144 lines
4.8 KiB
Python

from typing import Dict, List, Tuple
import torch
from cacheflow import cache_ops
KVCache = Tuple[torch.Tensor, torch.Tensor]
class CacheEngine:
def __init__(
self,
worker_id: int,
num_layers: int,
num_heads: int,
head_size: int,
block_size: int,
num_gpu_blocks: int,
num_cpu_blocks: int,
dtype: torch.dtype,
) -> None:
if head_size % 16 != 0:
raise ValueError(
f'head_size ({head_size}) must be a multiple of 16.')
self.worker_id = worker_id
self.num_layers = num_layers
self.num_heads = num_heads
self.head_size = head_size
self.block_size = block_size
self.num_gpu_blocks = num_gpu_blocks
self.num_cpu_blocks = num_cpu_blocks
self.dtype = dtype
# Initialize the cache.
self.gpu_cache = self.allocate_gpu_cache()
self.cpu_cache = self.allocate_cpu_cache()
# Initialize the stream for caching operations.
self.cache_stream = torch.cuda.Stream()
assert self.cache_stream != torch.cuda.current_stream()
# Initialize the events for stream synchronization.
self.events = [torch.cuda.Event() for _ in range(num_layers)]
def get_key_block_shape(self) -> Tuple[int, int, int, int]:
element_size = torch.tensor([], dtype=self.dtype).element_size()
x = 16 // element_size
return (
self.num_heads,
self.head_size // x,
self.block_size,
x,
)
def get_value_block_shape(self) -> Tuple[int, int, int]:
return (
self.num_heads,
self.head_size,
self.block_size,
)
def allocate_gpu_cache(self) -> List[KVCache]:
gpu_cache: List[KVCache] = []
key_block_shape = self.get_key_block_shape()
value_block_shape = self.get_value_block_shape()
for _ in range(self.num_layers):
key_blocks = torch.empty(
size=(self.num_gpu_blocks, *key_block_shape),
dtype=self.dtype,
device="cuda",
)
value_blocks = torch.empty(
size=(self.num_gpu_blocks, *value_block_shape),
dtype=self.dtype,
device="cuda",
)
gpu_cache.append((key_blocks, value_blocks))
return gpu_cache
def allocate_cpu_cache(self) -> List[KVCache]:
cpu_cache: List[KVCache] = []
key_block_shape = self.get_key_block_shape()
value_block_shape = self.get_value_block_shape()
for _ in range(self.num_layers):
key_blocks = torch.empty(
size=(self.num_cpu_blocks, *key_block_shape),
dtype=self.dtype,
pin_memory=True,
)
value_blocks = torch.empty(
size=(self.num_cpu_blocks, *value_block_shape),
dtype=self.dtype,
pin_memory=True,
)
cpu_cache.append((key_blocks, value_blocks))
return cpu_cache
def _swap(
self,
src: List[KVCache],
dst: List[KVCache],
src_to_dst: Dict[int, int],
) -> None:
with torch.cuda.stream(self.cache_stream):
for i in range(self.num_layers):
src_key_cache, src_value_cache = src[i]
dst_key_cache, dst_value_cache = dst[i]
# Copy the key blocks.
cache_ops.swap_blocks(
src_key_cache, dst_key_cache, src_to_dst)
# Copy the value blocks.
cache_ops.swap_blocks(
src_value_cache, dst_value_cache, src_to_dst)
event = self.events[i]
event.record(stream=self.cache_stream)
def swap_in(self, src_to_dst: Dict[int, int]) -> None:
self._swap(self.cpu_cache, self.gpu_cache, src_to_dst)
def swap_out(self, src_to_dst: Dict[int, int]) -> None:
self._swap(self.gpu_cache, self.cpu_cache, src_to_dst)
def _copy(
self,
src: List[KVCache],
dst: List[KVCache],
src_to_dsts: Dict[int, List[int]],
) -> None:
with torch.cuda.stream(self.cache_stream):
for i in range(self.num_layers):
src_key_cache, src_value_cache = src[i]
dst_key_cache, dst_value_cache = dst[i]
# Copy the key blocks.
cache_ops.copy_blocks(
src_key_cache, dst_key_cache, src_to_dsts)
# Copy the value blocks.
cache_ops.copy_blocks(
src_value_cache, dst_value_cache, src_to_dsts)
event = self.events[i]
event.record(stream=self.cache_stream)
def copy(self, src_to_dsts: Dict[int, List[int]]) -> None:
self._copy(self.gpu_cache, self.gpu_cache, src_to_dsts)