
The 2nd PR for #4532. This PR supports loading FP8 kv-cache scaling factors from a FP8 checkpoint (with .kv_scale parameter).
415 lines
16 KiB
Python
415 lines
16 KiB
Python
# coding=utf-8
|
|
# Adapted from
|
|
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only Mixtral model."""
|
|
from typing import Iterable, List, Optional, Tuple
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
from transformers import MixtralConfig
|
|
|
|
from vllm.attention import Attention, AttentionMetadata
|
|
from vllm.config import CacheConfig
|
|
from vllm.distributed import (get_tensor_model_parallel_rank,
|
|
get_tensor_model_parallel_world_size,
|
|
tensor_model_parallel_all_reduce)
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (QKVParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization.base_config import (
|
|
QuantizationConfig)
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.sampler import Sampler
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead, VocabParallelEmbedding)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.sequence import SamplerOutput
|
|
|
|
|
|
class MixtralMLP(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
num_experts: int,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.num_experts = num_experts
|
|
self.ffn_dim = intermediate_size
|
|
self.hidden_dim = hidden_size
|
|
|
|
self.w1 = ReplicatedLinear(self.hidden_dim,
|
|
self.ffn_dim,
|
|
bias=False,
|
|
quant_config=quant_config)
|
|
self.w2 = ReplicatedLinear(self.ffn_dim,
|
|
self.hidden_dim,
|
|
bias=False,
|
|
quant_config=quant_config)
|
|
self.w3 = ReplicatedLinear(self.hidden_dim,
|
|
self.ffn_dim,
|
|
bias=False,
|
|
quant_config=quant_config)
|
|
|
|
# TODO: Use vllm's SiluAndMul
|
|
self.act_fn = nn.SiLU()
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
w1_out, _ = self.w1(hidden_states)
|
|
w1_out = self.act_fn(w1_out)
|
|
w3_out, _ = self.w3(hidden_states)
|
|
current_hidden_states = w1_out * w3_out
|
|
current_hidden_states, _ = self.w2(current_hidden_states)
|
|
return current_hidden_states
|
|
|
|
|
|
class MixtralMoE(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: MixtralConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.rank = get_tensor_model_parallel_rank()
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
self.num_total_experts = config.num_local_experts
|
|
self.top_k = config.num_experts_per_tok
|
|
if self.tp_size > self.num_total_experts:
|
|
raise ValueError(
|
|
f"Tensor parallel size {self.tp_size} is greater than "
|
|
f"the number of experts {self.num_total_experts}.")
|
|
# Split experts equally between ranks
|
|
self.expert_indicies = np.array_split(range(
|
|
self.num_total_experts), self.tp_size)[self.rank].tolist()
|
|
if not self.expert_indicies:
|
|
raise ValueError(
|
|
f"Rank {self.rank} has no experts assigned to it.")
|
|
|
|
self.experts = nn.ModuleList([
|
|
MixtralMLP(self.num_total_experts,
|
|
config.hidden_size,
|
|
config.intermediate_size,
|
|
quant_config=quant_config)
|
|
if idx in self.expert_indicies else None
|
|
for idx in range(self.num_total_experts)
|
|
])
|
|
self.gate = ReplicatedLinear(config.hidden_size,
|
|
self.num_total_experts,
|
|
bias=False,
|
|
quant_config=None)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
num_tokens, hidden_dim = hidden_states.shape
|
|
hidden_states = hidden_states.view(-1, hidden_dim)
|
|
# router_logits: (num_tokens, n_experts)
|
|
router_logits, _ = self.gate(hidden_states)
|
|
|
|
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
|
routing_weights, selected_experts = torch.topk(routing_weights,
|
|
self.top_k,
|
|
dim=-1)
|
|
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
|
|
|
final_hidden_states = None
|
|
for expert_idx in self.expert_indicies:
|
|
expert_layer = self.experts[expert_idx]
|
|
expert_mask = (selected_experts == expert_idx)
|
|
expert_weights = (routing_weights * expert_mask).sum(dim=-1,
|
|
keepdim=True)
|
|
|
|
current_hidden_states = expert_layer(hidden_states).mul_(
|
|
expert_weights)
|
|
if final_hidden_states is None:
|
|
final_hidden_states = current_hidden_states
|
|
else:
|
|
final_hidden_states.add_(current_hidden_states)
|
|
|
|
return tensor_model_parallel_all_reduce(final_hidden_states).view(
|
|
num_tokens, hidden_dim)
|
|
|
|
|
|
class MixtralAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
num_kv_heads: int,
|
|
max_position: int = 4096 * 32,
|
|
rope_theta: float = 10000,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
sliding_window: Optional[int] = None,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = hidden_size
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = num_heads
|
|
assert self.total_num_heads % tp_size == 0
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
self.total_num_kv_heads = num_kv_heads
|
|
if self.total_num_kv_heads >= tp_size:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_kv_heads % tp_size == 0
|
|
else:
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
self.head_dim = hidden_size // self.total_num_heads
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
self.rope_theta = rope_theta
|
|
self.sliding_window = sliding_window
|
|
|
|
self.qkv_proj = QKVParallelLinear(
|
|
hidden_size,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
self.total_num_kv_heads,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
)
|
|
self.o_proj = RowParallelLinear(
|
|
self.total_num_heads * self.head_dim,
|
|
hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
)
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=max_position,
|
|
base=int(self.rope_theta),
|
|
is_neox_style=True,
|
|
)
|
|
self.attn = Attention(self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
sliding_window=self.sliding_window,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
|
output, _ = self.o_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class MixtralDecoderLayer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: MixtralConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
# Requires transformers > 4.32.0
|
|
rope_theta = getattr(config, "rope_theta", 10000)
|
|
self.self_attn = MixtralAttention(
|
|
hidden_size=self.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
max_position=config.max_position_embeddings,
|
|
num_kv_heads=config.num_key_value_heads,
|
|
rope_theta=rope_theta,
|
|
sliding_window=config.sliding_window,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config)
|
|
self.block_sparse_moe = MixtralMoE(config=config,
|
|
quant_config=quant_config)
|
|
self.input_layernorm = RMSNorm(config.hidden_size,
|
|
eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
|
eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
residual: Optional[torch.Tensor],
|
|
) -> torch.Tensor:
|
|
# Self Attention
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.input_layernorm(
|
|
hidden_states, residual)
|
|
hidden_states = self.self_attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
kv_cache=kv_cache,
|
|
attn_metadata=attn_metadata,
|
|
)
|
|
|
|
# Fully Connected
|
|
hidden_states, residual = self.post_attention_layernorm(
|
|
hidden_states, residual)
|
|
hidden_states = self.block_sparse_moe(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
|
|
class MixtralModel(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: MixtralConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.padding_idx = config.pad_token_id
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
)
|
|
self.layers = nn.ModuleList([
|
|
MixtralDecoderLayer(config,
|
|
cache_config,
|
|
quant_config=quant_config)
|
|
for _ in range(config.num_hidden_layers)
|
|
])
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.embed_tokens(input_ids)
|
|
residual = None
|
|
for i in range(len(self.layers)):
|
|
layer = self.layers[i]
|
|
hidden_states, residual = layer(positions, hidden_states,
|
|
kv_caches[i], attn_metadata,
|
|
residual)
|
|
hidden_states, _ = self.norm(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
|
|
class MixtralForCausalLM(nn.Module):
|
|
fall_back_to_pt_during_load = False
|
|
|
|
def __init__(
|
|
self,
|
|
config: MixtralConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
self.model = MixtralModel(config, cache_config, quant_config)
|
|
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
self.sampler = Sampler()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.model(input_ids, positions, kv_caches,
|
|
attn_metadata)
|
|
return hidden_states
|
|
|
|
def compute_logits(self, hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
|
logits = self.logits_processor(self.lm_head.weight, hidden_states,
|
|
sampling_metadata)
|
|
return logits
|
|
|
|
def sample(
|
|
self,
|
|
logits: Optional[torch.Tensor],
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[SamplerOutput]:
|
|
next_tokens = self.sampler(logits, sampling_metadata)
|
|
return next_tokens
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
]
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
# Skip experts that are not assigned to this worker.
|
|
if ("block_sparse_moe.experts." in name
|
|
and name not in params_dict):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|