vllm/vllm/core/scheduler.py
Alex Brooks a3691b6b5e
[Core][Frontend] Add Support for Inference Time mm_processor_kwargs (#9131)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2024-10-08 14:12:56 +00:00

1650 lines
71 KiB
Python

import enum
import os
import random
import time
from collections import deque
from dataclasses import dataclass, field
from typing import (Callable, Deque, Dict, Iterable, List, Optional, Set,
Tuple, Union)
from vllm.config import CacheConfig, LoRAConfig, SchedulerConfig
from vllm.core.interfaces import AllocStatus, BlockSpaceManager
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.prompt_adapter.request import PromptAdapterRequest
from vllm.sequence import (Sequence, SequenceData, SequenceGroup,
SequenceGroupMetadata, SequenceGroupMetadataDelta,
SequenceStatus)
from vllm.utils import Device, PyObjectCache
logger = init_logger(__name__)
# Test-only. If configured, decode is preempted with
# ARTIFICIAL_PREEMPTION_PROB% probability.
ENABLE_ARTIFICIAL_PREEMPT = bool(
os.getenv("VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT", False)) # noqa
ARTIFICIAL_PREEMPTION_PROB = 0.5
ARTIFICIAL_PREEMPTION_MAX_CNT = 500
class PreemptionMode(enum.Enum):
"""Preemption modes.
1. Swapping: Swap out the blocks of the preempted sequences to CPU memory
and swap them back in when the sequences are resumed.
2. Recomputation: Discard the blocks of the preempted sequences and
recompute them when the sequences are resumed, treating the sequences as
new prompts.
"""
SWAP = enum.auto()
RECOMPUTE = enum.auto()
@dataclass
class SchedulingBudget:
"""The available slots for scheduling.
TODO(sang): Right now, the budget is request_id-aware meaning it can ignore
budget update from the same request_id. It is because in normal scheduling
path, we update RUNNING num_seqs ahead of time, meaning it could be
updated more than once when scheduling RUNNING requests. Since this won't
happen if we only have chunked prefill scheduling, we can remove this
feature from the API when chunked prefill is enabled by default.
"""
token_budget: int
max_num_seqs: int
_request_ids_num_batched_tokens: Set[str] = field(default_factory=set)
_request_ids_num_curr_seqs: Set[str] = field(default_factory=set)
_num_batched_tokens: int = 0
_num_curr_seqs: int = 0
def can_schedule(self, *, num_new_tokens: int, num_new_seqs: int):
assert num_new_tokens != 0
assert num_new_seqs != 0
return (self.num_batched_tokens + num_new_tokens <= self.token_budget
and self.num_curr_seqs + num_new_seqs <= self.max_num_seqs)
def remaining_token_budget(self):
return self.token_budget - self.num_batched_tokens
def add_num_batched_tokens(self, req_id: str, num_batched_tokens: int):
if req_id in self._request_ids_num_batched_tokens:
return
self._request_ids_num_batched_tokens.add(req_id)
self._num_batched_tokens += num_batched_tokens
def subtract_num_batched_tokens(self, req_id: str,
num_batched_tokens: int):
if req_id in self._request_ids_num_batched_tokens:
self._request_ids_num_batched_tokens.remove(req_id)
self._num_batched_tokens -= num_batched_tokens
def add_num_seqs(self, req_id: str, num_curr_seqs: int):
if req_id in self._request_ids_num_curr_seqs:
return
self._request_ids_num_curr_seqs.add(req_id)
self._num_curr_seqs += num_curr_seqs
def subtract_num_seqs(self, req_id: str, num_curr_seqs: int):
if req_id in self._request_ids_num_curr_seqs:
self._request_ids_num_curr_seqs.remove(req_id)
self._num_curr_seqs -= num_curr_seqs
@property
def num_batched_tokens(self):
return self._num_batched_tokens
@property
def num_curr_seqs(self):
return self._num_curr_seqs
@dataclass
class ScheduledSequenceGroup:
# A sequence group that's scheduled.
seq_group: SequenceGroup
# The total chunk size (number of tokens) to process for next iteration.
# 1 for decoding. Same as prompt tokens for prefill, but if prefill is
# chunked, it can be smaller than that.
token_chunk_size: int
@dataclass
class SchedulerOutputs:
"""The scheduling decision made from a scheduler."""
# Scheduled sequence groups.
scheduled_seq_groups: Iterable[ScheduledSequenceGroup]
# Number of prefill groups scheduled.
num_prefill_groups: int
# Total number of batched tokens.
num_batched_tokens: int
# Blocks to swap in. List of CPU -> GPU block number.
blocks_to_swap_in: List[Tuple[int, int]]
# Blocks to swap out. List of GPU -> CPU block number.
blocks_to_swap_out: List[Tuple[int, int]]
# Blocks to copy. Source to dest block.
blocks_to_copy: List[Tuple[int, int]]
# Sequence groups that are going to be ignored.
ignored_seq_groups: List[SequenceGroup]
# The number of slots for lookahead decoding.
num_lookahead_slots: int
# The number of requests in the running queue
running_queue_size: int
preempted: int
def __post_init__(self):
# Swap in and swap out should never happen at the same time.
assert not (self.blocks_to_swap_in and self.blocks_to_swap_out)
self.num_loras: int = len(self.lora_requests)
if self.num_loras > 0:
self._sort_by_lora_ids()
self.num_prompt_adapters: int = len(self.prompt_adapter_requests)
def is_empty(self) -> bool:
# NOTE: We do not consider the ignored sequence groups.
return (not self.scheduled_seq_groups and not self.blocks_to_swap_in
and not self.blocks_to_swap_out and not self.blocks_to_copy)
def _sort_by_lora_ids(self):
self.scheduled_seq_groups = sorted(
self.scheduled_seq_groups,
key=lambda g: (g.seq_group.lora_int_id, g.seq_group.request_id))
@property
def lora_requests(self) -> Set[LoRARequest]:
return {
g.seq_group.lora_request
for g in self.scheduled_seq_groups
if g.seq_group.lora_request is not None
}
@property
def prompt_adapter_requests(self) -> Set[PromptAdapterRequest]:
return {
g.seq_group.prompt_adapter_request
for g in self.scheduled_seq_groups
if g.seq_group.prompt_adapter_request is not None
}
@dataclass
class SchedulerRunningOutputs:
"""The requests that are scheduled from a running queue.
Could contain prefill (prefill that's chunked) or decodes. If there's not
enough memory, it can be preempted (for recompute) or swapped out.
"""
# Selected sequences that are running and in a decoding phase.
decode_seq_groups: List[ScheduledSequenceGroup]
# Selected sequences that are running and in a prefill phase.
# I.e., it means the prefill has been chunked.
prefill_seq_groups: List[ScheduledSequenceGroup]
# The preempted sequences.
preempted: List[SequenceGroup]
# Sequences that are swapped out.
swapped_out: List[SequenceGroup]
# The blocks to swap out.
blocks_to_swap_out: List[Tuple[int, int]]
# The blocks to copy.
blocks_to_copy: List[Tuple[int, int]]
# The number of slots for lookahead decoding.
num_lookahead_slots: int
# Optimization for fast-access to seq_group lists
decode_seq_groups_list: List[SequenceGroup]
prefill_seq_groups_list: List[SequenceGroup]
@classmethod
def create_empty(cls) -> "SchedulerRunningOutputs":
return SchedulerRunningOutputs(
decode_seq_groups=[],
prefill_seq_groups=[],
preempted=[],
swapped_out=[],
blocks_to_swap_out=[],
blocks_to_copy=[],
num_lookahead_slots=0,
decode_seq_groups_list=[],
prefill_seq_groups_list=[],
)
@dataclass
class SchedulerSwappedInOutputs:
"""The requests that are scheduled from a swap queue.
Could contain prefill (prefill that's chunked) or decodes.
"""
# Selected sequences that are going to be swapped in and is in a
# decoding phase.
decode_seq_groups: List[ScheduledSequenceGroup]
# Selected sequences that are going to be swapped in and in a prefill
# phase. I.e., it means the prefill has been chunked.
prefill_seq_groups: List[ScheduledSequenceGroup]
# The blocks to swap in.
blocks_to_swap_in: List[Tuple[int, int]]
# The blocks to copy.
blocks_to_copy: List[Tuple[int, int]]
# The number of slots for lookahead decoding.
num_lookahead_slots: int
# Infeasible sequence groups.
infeasible_seq_groups: List[SequenceGroup]
@classmethod
def create_empty(cls) -> "SchedulerSwappedInOutputs":
return SchedulerSwappedInOutputs(
decode_seq_groups=[],
prefill_seq_groups=[],
blocks_to_swap_in=[],
blocks_to_copy=[],
num_lookahead_slots=0,
infeasible_seq_groups=[],
)
@dataclass
class SchedulerPrefillOutputs:
"""The requests that are scheduled from a waiting queue.
Could contain a fresh prefill requests or preempted requests that need
to be recomputed from scratch.
"""
# Selected sequences for prefill.
seq_groups: List[ScheduledSequenceGroup]
# Ignored sequence groups.
ignored_seq_groups: List[SequenceGroup]
num_lookahead_slots: int
@classmethod
def create_empty(cls) -> "SchedulerPrefillOutputs":
return SchedulerPrefillOutputs(
seq_groups=[],
ignored_seq_groups=[],
num_lookahead_slots=0,
)
def seq_group_metadata_builder():
return SequenceGroupMetadata(request_id="",
is_prompt=False,
seq_data={},
sampling_params=None,
block_tables={})
def scheduler_running_outputs_builder():
return SchedulerRunningOutputs(decode_seq_groups=[],
prefill_seq_groups=[],
preempted=[],
swapped_out=[],
blocks_to_swap_out=[],
blocks_to_copy=[],
num_lookahead_slots=0,
prefill_seq_groups_list=[],
decode_seq_groups_list=[])
def scheduled_seq_group_builder():
return ScheduledSequenceGroup(SequenceGroup("", [], -1),
token_chunk_size=0)
# return ScheduledSequenceGroup(seq_group=None, token_chunk_size=0)
class Scheduler:
def __init__(
self,
scheduler_config: SchedulerConfig,
cache_config: CacheConfig,
lora_config: Optional[LoRAConfig],
pipeline_parallel_size: int = 1,
output_proc_callback: Optional[Callable] = None,
) -> None:
self.scheduler_config = scheduler_config
self.cache_config = cache_config
# Note for LoRA scheduling: the current policy is extremely
# simple and NOT fair. It can lead to starvation of some
# LoRAs. This should be improved in the future.
self.lora_config = lora_config
version = "v1"
if self.scheduler_config.use_v2_block_manager:
version = "v2"
if self.scheduler_config.embedding_mode:
version = "embedding"
BlockSpaceManagerImpl = BlockSpaceManager.get_block_space_manager_class(
version)
num_gpu_blocks = cache_config.num_gpu_blocks
if num_gpu_blocks:
num_gpu_blocks //= pipeline_parallel_size
num_cpu_blocks = cache_config.num_cpu_blocks
if num_cpu_blocks:
num_cpu_blocks //= pipeline_parallel_size
# Create the block space manager.
self.block_manager = BlockSpaceManagerImpl(
block_size=self.cache_config.block_size,
num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=num_cpu_blocks,
sliding_window=self.cache_config.sliding_window,
enable_caching=self.cache_config.enable_prefix_caching)
# Sequence groups in the WAITING state.
# Contain new prefill or preempted requests.
self.waiting: Deque[SequenceGroup] = deque()
# Sequence groups in the RUNNING state.
# Contain decode requests.
self.running: Deque[SequenceGroup] = deque()
# Sequence groups in the SWAPPED state.
# Contain decode requests that are swapped out.
self.swapped: Deque[SequenceGroup] = deque()
# Sequence groups finished requests ids since last step iteration.
# It lets the model know that any state associated with these requests
# can and must be released after the current step.
# This is used to evict the finished requests from the Mamba cache.
self._finished_requests_ids: List[str] = list()
# Time at previous scheduling step
self.prev_time = 0.0
# Did we schedule a prompt at previous step?
self.prev_prompt = False
# Latency of the last prompt step
self.last_prompt_latency = 0.0
# preemption mode, RECOMPUTE or SWAP
self.user_specified_preemption_mode = scheduler_config.preemption_mode
# The following field is test-only. It is used to inject artificial
# preemption.
self.enable_artificial_preemption = ENABLE_ARTIFICIAL_PREEMPT
self.artificial_preempt_cnt = (ARTIFICIAL_PREEMPTION_MAX_CNT
if self.enable_artificial_preemption
else 0)
self.num_cumulative_preemption: int = 0
# Used to cache python objects
self._seq_group_metadata_cache: List[PyObjectCache] = []
self._scheduler_running_outputs_cache: List[PyObjectCache] = []
self._scheduled_seq_group_cache: List[PyObjectCache] = []
# For async output processing, we need to swap cache buffers between
# iterations. I.e. since the output processing is lagged one step,
# we cannot reuse the cached objects immediately when the schedule()
# is called again, but only when schedule() is called the second time.
self.output_proc_callback = output_proc_callback
self.use_async_output_proc = self.output_proc_callback is not None
self.num_cache_iters = 2 if self.use_async_output_proc else 1
self.cache_id = 0
for i in range(self.num_cache_iters):
self._seq_group_metadata_cache.append(
PyObjectCache(seq_group_metadata_builder))
self._scheduler_running_outputs_cache.append(
PyObjectCache(scheduler_running_outputs_builder))
self._scheduled_seq_group_cache.append(
PyObjectCache(scheduled_seq_group_builder))
# For async postprocessor, the extra decode run cannot be done
# when the request reaches max_model_len. In this case, the request
# will be stopped during schedule() call and added to this stop list
# for processing and deallocation by the free_finished_seq_groups()
self._async_stopped: List[SequenceGroup] = []
@property
def next_cache_id(self):
return (self.cache_id + 1) % self.num_cache_iters
@property
def lora_enabled(self) -> bool:
return bool(self.lora_config)
@property
def num_decoding_tokens_per_seq(self) -> int:
"""The number of new tokens."""
return 1
def add_seq_group(self, seq_group: SequenceGroup) -> None:
# Add sequence groups to the waiting queue.
self.waiting.append(seq_group)
def _add_seq_group_to_running(self, seq_group: SequenceGroup) -> None:
# Add sequence groups to the running queue.
# Only for testing purposes.
self.running.append(seq_group)
def _add_seq_group_to_swapped(self, seq_group: SequenceGroup) -> None:
# Add sequence groups to the swapped queue.
# Only for testing purposes.
self.swapped.append(seq_group)
def abort_seq_group(self, request_id: Union[str, Iterable[str]]) -> None:
"""Aborts a sequence group with the given ID.
Check if the sequence group with the given ID
is present in any of the state queue.
If present, remove the sequence group from the state queue.
Also, if any of the sequences in the sequence group is not finished,
free the sequence with status `FINISHED_ABORTED`.
Otherwise, do nothing.
Args:
request_id: The ID(s) of the sequence group to abort.
"""
if isinstance(request_id, str):
request_id = (request_id, )
request_ids = set(request_id)
for state_queue in [self.waiting, self.running, self.swapped]:
aborted_groups: List[SequenceGroup] = []
for seq_group in state_queue:
if not request_ids:
# Using 'break' here may add two extra iterations,
# but is acceptable to reduce complexity.
break
if seq_group.request_id in request_ids:
# Appending aborted group into pending list.
aborted_groups.append(seq_group)
request_ids.remove(seq_group.request_id)
for aborted_group in aborted_groups:
# Remove the sequence group from the state queue.
state_queue.remove(aborted_group)
# Remove the aborted request from the Mamba cache.
self._finished_requests_ids.append(aborted_group.request_id)
for seq in aborted_group.get_seqs():
if seq.is_finished():
continue
seq.status = SequenceStatus.FINISHED_ABORTED
self.free_seq(seq)
self._free_seq_group_cross_attn_blocks(aborted_group)
def _free_seq_group_cross_attn_blocks(
self,
seq_group: SequenceGroup,
) -> None:
"""
Free a sequence group from a cross-attention block table.
Has no effect on decoder-only models.
"""
if seq_group.is_encoder_decoder():
self.block_manager.free_cross(seq_group)
def has_unfinished_seqs(self) -> bool:
return len(self.waiting) != 0 or len(self.running) != 0 or len(
self.swapped) != 0
def get_prefix_cache_hit_rate(self, device: Device) -> float:
return self.block_manager.get_prefix_cache_hit_rate(device)
def get_num_unfinished_seq_groups(self) -> int:
return len(self.waiting) + len(self.running) + len(self.swapped)
def get_and_reset_finished_requests_ids(self) -> List[str]:
"""Flushes the list of request ids of previously finished seq_groups."""
finished_requests_ids = self._finished_requests_ids
self._finished_requests_ids = list()
return finished_requests_ids
def _schedule_running(
self,
budget: SchedulingBudget,
curr_loras: Optional[Set[int]],
enable_chunking: bool = False,
) -> SchedulerRunningOutputs:
"""Schedule sequence groups that are running.
Running queue should include decode and chunked prefill requests.
Args:
budget: The scheduling budget. The argument is in-place updated
when any decodes are preempted.
curr_loras: Currently batched lora request ids. The argument is
in-place updated when any decodes are preempted.
enable_chunking: If True, seq group can be chunked and only a
chunked number of tokens are scheduled if
`budget.num_batched_tokens` has not enough capacity to schedule
all tokens.
Returns:
SchedulerRunningOutputs.
"""
ret: SchedulerRunningOutputs = \
self._scheduler_running_outputs_cache[self.cache_id].get_object()
ret.blocks_to_swap_out.clear()
ret.blocks_to_copy.clear()
ret.decode_seq_groups.clear()
ret.prefill_seq_groups.clear()
ret.preempted.clear()
ret.swapped_out.clear()
ret.num_lookahead_slots = self._get_num_lookahead_slots(
is_prefill=False, enable_chunking=enable_chunking)
ret.decode_seq_groups_list.clear()
ret.prefill_seq_groups_list.clear()
# Blocks that need to be swapped or copied before model execution.
blocks_to_swap_out: List[Tuple[int, int]] = ret.blocks_to_swap_out
blocks_to_copy: List[Tuple[int, int]] = ret.blocks_to_copy
decode_seq_groups: List[ScheduledSequenceGroup] = ret.decode_seq_groups
prefill_seq_groups: List[
ScheduledSequenceGroup] = ret.prefill_seq_groups
preempted: List[SequenceGroup] = ret.preempted
swapped_out: List[SequenceGroup] = ret.swapped_out
running_queue = self.running
assert len(self._async_stopped) == 0
while running_queue:
seq_group = running_queue[0]
num_running_tokens = self._get_num_new_tokens(
seq_group, SequenceStatus.RUNNING, enable_chunking, budget)
if num_running_tokens == 0:
# No budget => Stop
break
running_queue.popleft()
# With async postprocessor, an extra decode run is done
# to process the final tokens. The check below avoids this extra
# decode run when the model max len is reached, in order to avoid
# a memory overflow.
if self.use_async_output_proc and seq_group.seqs[0].get_len(
) > self.scheduler_config.max_model_len:
self._async_stopped.append(seq_group)
continue
# NOTE(woosuk): Preemption happens only when there is no available
# slot to keep all the sequence groups in the RUNNING state.
while not self._can_append_slots(seq_group, enable_chunking):
budget.subtract_num_batched_tokens(seq_group.request_id,
num_running_tokens)
num_running_seqs = seq_group.get_max_num_running_seqs()
budget.subtract_num_seqs(seq_group.request_id,
num_running_seqs)
if (curr_loras is not None and seq_group.lora_int_id > 0
and seq_group.lora_int_id in curr_loras):
curr_loras.remove(seq_group.lora_int_id)
# Determine victim sequence
cont_loop = True
if running_queue:
# Preempt the lowest-priority sequence group.
victim_seq_group = running_queue.pop()
else:
# No other sequence group can be preempted.
# Preempt the current sequence group.
# Note: This is also where we stop this loop
# (since there is nothing else to preempt)
victim_seq_group = seq_group
cont_loop = False
# With async postprocessor, before preempting a sequence
# we need to ensure it has no pending async postprocessor
do_preempt = True
if self.use_async_output_proc:
assert self.output_proc_callback is not None
self.output_proc_callback(
request_id=victim_seq_group.request_id)
# It may be that the async pending "victim_seq_group"
# becomes finished, in which case we simply free it.
if victim_seq_group.is_finished():
self._free_finished_seq_group(victim_seq_group)
do_preempt = False
# Do preemption
if do_preempt:
preempted_mode = self._preempt(victim_seq_group,
blocks_to_swap_out)
if preempted_mode == PreemptionMode.RECOMPUTE:
preempted.append(victim_seq_group)
else:
swapped_out.append(victim_seq_group)
if not cont_loop:
break
else:
self._append_slots(seq_group, blocks_to_copy, enable_chunking)
is_prefill = seq_group.is_prefill()
scheduled_seq_group: ScheduledSequenceGroup = \
self._scheduled_seq_group_cache[self.cache_id].get_object()
scheduled_seq_group.seq_group = seq_group
if is_prefill:
scheduled_seq_group.token_chunk_size = num_running_tokens
prefill_seq_groups.append(scheduled_seq_group)
ret.prefill_seq_groups_list.append(seq_group)
else:
scheduled_seq_group.token_chunk_size = 1
decode_seq_groups.append(scheduled_seq_group)
ret.decode_seq_groups_list.append(seq_group)
budget.add_num_batched_tokens(seq_group.request_id,
num_running_tokens)
# OPTIMIZATION: Note that get_max_num_running_seqs is
# expensive. For the default scheduling chase where
# enable_chunking is False, num_seqs are updated before running
# this method, so we don't have to update it again here.
if enable_chunking:
num_running_seqs = seq_group.get_max_num_running_seqs()
budget.add_num_seqs(seq_group.request_id, num_running_seqs)
if curr_loras is not None and seq_group.lora_int_id > 0:
curr_loras.add(seq_group.lora_int_id)
self._scheduler_running_outputs_cache[self.next_cache_id].reset()
self._scheduled_seq_group_cache[self.next_cache_id].reset()
return ret
def _schedule_swapped(
self,
budget: SchedulingBudget,
curr_loras: Optional[Set[int]],
enable_chunking: bool = False,
) -> SchedulerSwappedInOutputs:
"""Schedule sequence groups that are swapped out.
It schedules swapped requests as long as it fits `budget` and
curr_loras <= max_lora from the scheduling config. The input arguments
`budget` and `curr_loras` are updated based on scheduled seq_groups.
Args:
budget: The scheduling budget. The argument is in-place updated
when any requests are swapped in.
curr_loras: Currently batched lora request ids. The argument is
in-place updated when any requests are swapped in.
enable_chunking: If True, seq group can be chunked and only a
chunked number of tokens are scheduled if
`budget.num_batched_tokens` has not enough capacity to schedule
all tokens.
Returns:
SchedulerSwappedInOutputs.
"""
# Blocks that need to be swapped or copied before model execution.
blocks_to_swap_in: List[Tuple[int, int]] = []
blocks_to_copy: List[Tuple[int, int]] = []
decode_seq_groups: List[ScheduledSequenceGroup] = []
prefill_seq_groups: List[ScheduledSequenceGroup] = []
infeasible_seq_groups: List[SequenceGroup] = []
swapped_queue = self.swapped
leftover_swapped: Deque[SequenceGroup] = deque()
while swapped_queue:
seq_group = swapped_queue[0]
# If the sequence group cannot be swapped in, stop.
is_prefill = seq_group.is_prefill()
alloc_status = self.block_manager.can_swap_in(
seq_group,
self._get_num_lookahead_slots(is_prefill, enable_chunking))
if alloc_status == AllocStatus.LATER:
break
elif alloc_status == AllocStatus.NEVER:
logger.warning(
"Failing the request %s because there's not enough kv "
"cache blocks to run the entire sequence.",
seq_group.request_id)
for seq in seq_group.get_seqs():
seq.status = SequenceStatus.FINISHED_IGNORED
infeasible_seq_groups.append(seq_group)
swapped_queue.popleft()
continue
lora_int_id = 0
if self.lora_enabled:
lora_int_id = seq_group.lora_int_id
assert curr_loras is not None
assert self.lora_config is not None
if (lora_int_id > 0 and (lora_int_id not in curr_loras)
and len(curr_loras) >= self.lora_config.max_loras):
# We don't have a space for another LoRA, so
# we ignore this request for now.
leftover_swapped.appendleft(seq_group)
swapped_queue.popleft()
continue
# The total number of sequences in the RUNNING state should not
# exceed the maximum number of sequences.
num_new_seqs = seq_group.get_max_num_running_seqs()
num_new_tokens = self._get_num_new_tokens(seq_group,
SequenceStatus.SWAPPED,
enable_chunking, budget)
if (num_new_tokens == 0
or not budget.can_schedule(num_new_tokens=num_new_tokens,
num_new_seqs=num_new_seqs)):
break
if lora_int_id > 0 and curr_loras is not None:
curr_loras.add(lora_int_id)
swapped_queue.popleft()
self._swap_in(seq_group, blocks_to_swap_in)
self._append_slots(seq_group, blocks_to_copy, enable_chunking)
is_prefill = seq_group.is_prefill()
if is_prefill:
prefill_seq_groups.append(
ScheduledSequenceGroup(seq_group,
token_chunk_size=num_new_tokens))
else:
decode_seq_groups.append(
ScheduledSequenceGroup(seq_group, token_chunk_size=1))
budget.add_num_batched_tokens(seq_group.request_id, num_new_tokens)
budget.add_num_seqs(seq_group.request_id, num_new_seqs)
swapped_queue.extendleft(leftover_swapped)
return SchedulerSwappedInOutputs(
decode_seq_groups=decode_seq_groups,
prefill_seq_groups=prefill_seq_groups,
blocks_to_swap_in=blocks_to_swap_in,
blocks_to_copy=blocks_to_copy,
num_lookahead_slots=self._get_num_lookahead_slots(
is_prefill=False, enable_chunking=enable_chunking),
infeasible_seq_groups=infeasible_seq_groups,
)
def _get_prompt_limit(self, seq_group: SequenceGroup) -> int:
if self.scheduler_config.chunked_prefill_enabled and \
not self.scheduler_config.is_multi_step:
prompt_limit = self.scheduler_config.max_model_len
else:
prompt_limit = min(self.scheduler_config.max_model_len,
self.scheduler_config.max_num_batched_tokens)
# Model is fine tuned with long context. Return the fine tuned max_len.
if (seq_group.lora_request
and seq_group.lora_request.long_lora_max_len):
assert prompt_limit <= seq_group.lora_request.long_lora_max_len
return seq_group.lora_request.long_lora_max_len
else:
return prompt_limit
def _get_priority(self,
seq_group: SequenceGroup) -> Tuple[Optional[int], float]:
""" Get the priority of the sequence group.
Highest preference to user-defined priority, followed by arrival time.
Args:
seq_group: The sequence group input.
Returns:
The priority of the sequence group.
"""
return seq_group.priority, seq_group.arrival_time
def _schedule_priority_preemption(
self,
budget: SchedulingBudget,
) -> int:
"""Sorts waiting and running queue. Also, force preempt requests
from the running queue if their priority is lower.
Priority-based preemption is used with the priority policy.
Args:
budget: The scheduling budget. The argument is in-place updated
when any requests are scheduled.
Returns:
A count of priority-based preemptions.
"""
waiting_queue = self.waiting
running_queue = deque(sorted(self.running, key=self._get_priority))
blocks_to_swap_out: List[Tuple[int, int]] = []
force_preemption_count = 0
if waiting_queue:
seq_group = waiting_queue.popleft()
num_new_seqs = seq_group.get_max_num_running_seqs()
num_new_tokens = self._get_num_new_tokens(seq_group,
SequenceStatus.WAITING,
False, budget)
#Only preempt if priority inversion exists
while running_queue and self._get_priority(
running_queue[-1]) > self._get_priority(seq_group):
#Only preempt if waiting sequence cannot be allocated
can_allocate = self.block_manager.can_allocate(seq_group)
if (num_new_tokens and can_allocate == AllocStatus.OK
and budget.can_schedule(num_new_tokens=num_new_tokens,
num_new_seqs=num_new_seqs)):
break
#Adjust budget to remove the victim sequence group
vseq_group = running_queue.pop()
num_running_tokens = self._get_num_new_tokens(
vseq_group, SequenceStatus.RUNNING, False, budget)
budget.subtract_num_batched_tokens(vseq_group.request_id,
num_running_tokens)
num_running_seqs = vseq_group.get_max_num_running_seqs()
budget.subtract_num_seqs(vseq_group.request_id,
num_running_seqs)
#Preempt out the victim sequence group
self._preempt(vseq_group, blocks_to_swap_out,
PreemptionMode.RECOMPUTE)
waiting_queue.appendleft(vseq_group)
force_preemption_count += 1
#Put the sequence back into the waiting queue
waiting_queue.appendleft(seq_group)
waiting_queue = deque(sorted(waiting_queue, key=self._get_priority))
self.waiting = waiting_queue
self.running = running_queue
return force_preemption_count
def _schedule_prefills(
self,
budget: SchedulingBudget,
curr_loras: Optional[Set[int]],
enable_chunking: bool = False,
) -> SchedulerPrefillOutputs:
"""Schedule sequence groups that are in prefill stage.
Note that the current scheduler treats PREEMPTED_FOR_RECOMPUTE
as a new prefill (that starts from beginning -> most recently generated
tokens).
It schedules waiting requests as long as it fits `budget` and
curr_loras <= max_lora from the scheduling config. The input arguments
`budget` and `curr_loras` are updated based on scheduled seq_groups.
Args:
budget: The scheduling budget. The argument is in-place updated
when any requests are scheduled.
curr_loras: Currently batched lora request ids. The argument is
in-place updated when any requests are scheduled.
enable_chunking: If True, seq group can be chunked and only a
chunked number of tokens are scheduled if
`budget.num_batched_tokens` has not enough capacity to schedule
all tokens.
Returns:
SchedulerPrefillOutputs.
"""
ignored_seq_groups: List[SequenceGroup] = []
seq_groups: List[ScheduledSequenceGroup] = []
waiting_queue = self.waiting
leftover_waiting_sequences: Deque[SequenceGroup] = deque()
while self._passed_delay(time.time()) and waiting_queue:
seq_group = waiting_queue[0]
waiting_seqs = seq_group.get_seqs(status=SequenceStatus.WAITING)
assert len(waiting_seqs) == 1, (
"Waiting sequence group should have only one prompt "
"sequence.")
num_new_tokens = self._get_num_new_tokens(seq_group,
SequenceStatus.WAITING,
enable_chunking, budget)
if not enable_chunking:
num_prompt_tokens = waiting_seqs[0].get_len()
assert num_new_tokens == num_prompt_tokens
prompt_limit = self._get_prompt_limit(seq_group)
if num_new_tokens > prompt_limit:
logger.warning(
"Input prompt (%d tokens) is too long"
" and exceeds limit of %d", num_new_tokens, prompt_limit)
for seq in waiting_seqs:
seq.status = SequenceStatus.FINISHED_IGNORED
ignored_seq_groups.append(seq_group)
waiting_queue.popleft()
continue
num_lookahead_slots: int = 0
if self.scheduler_config.is_multi_step and enable_chunking:
num_lookahead_slots = self._get_num_lookahead_slots(
True, enable_chunking)
# If the sequence group cannot be allocated, stop.
can_allocate = self.block_manager.can_allocate(
seq_group, num_lookahead_slots=num_lookahead_slots)
if can_allocate == AllocStatus.LATER:
break
elif can_allocate == AllocStatus.NEVER:
logger.warning(
"Input prompt (%d tokens) + lookahead slots (%d) is "
"too long and exceeds the capacity of block_manager",
num_new_tokens, num_lookahead_slots)
for seq in waiting_seqs:
seq.status = SequenceStatus.FINISHED_IGNORED
ignored_seq_groups.append(seq_group)
waiting_queue.popleft()
continue
lora_int_id = 0
if self.lora_enabled:
lora_int_id = seq_group.lora_int_id
assert curr_loras is not None
assert self.lora_config is not None
if (self.lora_enabled and lora_int_id > 0
and lora_int_id not in curr_loras
and len(curr_loras) >= self.lora_config.max_loras):
# We don't have a space for another LoRA, so
# we ignore this request for now.
leftover_waiting_sequences.appendleft(seq_group)
waiting_queue.popleft()
continue
num_new_seqs = seq_group.get_max_num_running_seqs()
if (num_new_tokens == 0
or not budget.can_schedule(num_new_tokens=num_new_tokens,
num_new_seqs=num_new_seqs)):
break
# Can schedule this request.
if curr_loras is not None and lora_int_id > 0:
curr_loras.add(lora_int_id)
waiting_queue.popleft()
self._allocate_and_set_running(seq_group)
if enable_chunking and self.scheduler_config.is_multi_step:
blocks_to_copy: List[Tuple[int, int]] = []
# init_multi_step_from_lookahead_slots happens in append_slots
self._append_slots(seq_group, blocks_to_copy, enable_chunking)
# This assert will trip when a copy-on-write happens. This is
# not a concern as the very first sequence-group block
# allocation happens above. Still, we have the assert to
# catch any edge-cases.
assert not blocks_to_copy
else:
seq_group.init_multi_step_from_lookahead_slots(
num_lookahead_slots,
num_scheduler_steps=self.scheduler_config.
num_scheduler_steps,
is_multi_step=self.scheduler_config.is_multi_step,
enable_chunking=enable_chunking)
seq_groups.append(
ScheduledSequenceGroup(seq_group=seq_group,
token_chunk_size=num_new_tokens))
budget.add_num_batched_tokens(seq_group.request_id, num_new_tokens)
budget.add_num_seqs(seq_group.request_id, num_new_seqs)
# Queue requests that couldn't be scheduled.
waiting_queue.extendleft(leftover_waiting_sequences)
if len(seq_groups) > 0:
self.prev_prompt = True
return SchedulerPrefillOutputs(
seq_groups=seq_groups,
ignored_seq_groups=ignored_seq_groups,
num_lookahead_slots=self._get_num_lookahead_slots(
is_prefill=True, enable_chunking=enable_chunking))
def _schedule_default(self) -> SchedulerOutputs:
"""Schedule queued requests.
The current policy is designed to optimize the throughput. First,
it batches as many prefill requests as possible. And it schedules
decodes. If there's a pressure on GPU memory, decode requests can
be swapped or preempted.
"""
# Include running requests to the budget.
budget = SchedulingBudget(
token_budget=self.scheduler_config.max_num_batched_tokens,
max_num_seqs=self.scheduler_config.max_num_seqs,
)
# Make sure we include num running seqs before scheduling prefill,
# so that we don't schedule beyond max_num_seqs for prefill.
for seq_group in self.running:
budget.add_num_seqs(seq_group.request_id,
seq_group.get_max_num_running_seqs())
curr_loras = set(
seq_group.lora_int_id for seq_group in self.running
if seq_group.lora_int_id > 0) if self.lora_enabled else None
prefills = SchedulerPrefillOutputs.create_empty()
running_scheduled = SchedulerRunningOutputs.create_empty()
swapped_in = SchedulerSwappedInOutputs.create_empty()
# If any requests are swapped, prioritized swapped requests.
if not self.swapped:
prefills = self._schedule_prefills(budget,
curr_loras,
enable_chunking=False)
if len(prefills.seq_groups
) == 0 and self.scheduler_config.policy == "priority":
self._schedule_priority_preemption(budget)
# Don't schedule decodes if prefills are scheduled.
# NOTE: If `_schedule_prefills` doesn't enable chunking, self.running
# only contains decode requests, not chunked prefills.
if len(prefills.seq_groups) == 0:
running_scheduled = self._schedule_running(budget,
curr_loras,
enable_chunking=False)
# If any sequence group is preempted, do not swap in any sequence
# group. because it means there's no slot for new running requests.
if len(running_scheduled.preempted) + len(
running_scheduled.swapped_out) == 0:
swapped_in = self._schedule_swapped(budget, curr_loras)
assert (budget.num_batched_tokens <=
self.scheduler_config.max_num_batched_tokens)
assert budget.num_curr_seqs <= self.scheduler_config.max_num_seqs
# Update waiting requests.
self.waiting.extendleft(running_scheduled.preempted)
# Update new running requests.
if len(prefills.seq_groups) > 0:
self.running.extend([s.seq_group for s in prefills.seq_groups])
self.running.extend(running_scheduled.decode_seq_groups_list)
if len(swapped_in.decode_seq_groups) > 0:
self.running.extend(
[s.seq_group for s in swapped_in.decode_seq_groups])
# Update swapped requests.
self.swapped.extend(running_scheduled.swapped_out)
preempted = (len(running_scheduled.preempted) +
len(running_scheduled.swapped_out))
# There should be no prefill from running queue because this policy
# doesn't allow chunked prefills.
assert len(running_scheduled.prefill_seq_groups) == 0
assert len(swapped_in.prefill_seq_groups) == 0
# Merge lists
num_prefill_groups = len(prefills.seq_groups)
if num_prefill_groups > 0:
scheduled_seq_groups = prefills.seq_groups
scheduled_seq_groups.extend(running_scheduled.decode_seq_groups)
else:
scheduled_seq_groups = running_scheduled.decode_seq_groups
scheduled_seq_groups.extend(swapped_in.decode_seq_groups)
blocks_to_copy = running_scheduled.blocks_to_copy
blocks_to_copy.extend(swapped_in.blocks_to_copy)
ignored_seq_groups = prefills.ignored_seq_groups
ignored_seq_groups.extend(swapped_in.infeasible_seq_groups)
return SchedulerOutputs(
scheduled_seq_groups=scheduled_seq_groups,
num_prefill_groups=num_prefill_groups,
num_batched_tokens=budget.num_batched_tokens,
blocks_to_swap_in=swapped_in.blocks_to_swap_in,
blocks_to_swap_out=running_scheduled.blocks_to_swap_out,
blocks_to_copy=blocks_to_copy,
ignored_seq_groups=ignored_seq_groups,
num_lookahead_slots=running_scheduled.num_lookahead_slots,
running_queue_size=len(self.running),
preempted=preempted,
)
def _schedule_chunked_prefill(self) -> SchedulerOutputs:
"""Schedule queued requests.
Chunked prefill allows to chunk prefill requests, batch them together
with decode requests. This policy 1. schedule as many decoding requests
as possible. 2. schedule chunked prefill requests that are not
finished. 3. schedule swapped request. 4. schedule new prefill
requests.
The policy can sustain the high GPU utilization because it can put
prefill and decodes requests to the same batch, while it improves
inter token latency because decodes requests don't need to be blocked
by prefill requests.
"""
budget = SchedulingBudget(
token_budget=self.scheduler_config.max_num_batched_tokens,
max_num_seqs=self.scheduler_config.max_num_seqs,
)
curr_loras: Set[int] = set()
prefills = SchedulerPrefillOutputs.create_empty()
swapped_in = SchedulerSwappedInOutputs.create_empty()
# Decoding should be always scheduled first by fcfs.
running_scheduled = self._schedule_running(budget,
curr_loras,
enable_chunking=True)
# Schedule swapped out requests.
# If preemption happens, it means we don't have space for swap-in.
if len(running_scheduled.preempted) + len(
running_scheduled.swapped_out) == 0:
swapped_in = self._schedule_swapped(budget, curr_loras)
# Schedule new prefills.
prefills = self._schedule_prefills(budget,
curr_loras,
enable_chunking=True)
assert (budget.num_batched_tokens <=
self.scheduler_config.max_num_batched_tokens)
assert budget.num_curr_seqs <= self.scheduler_config.max_num_seqs
# Update waiting requests.
self.waiting.extendleft(running_scheduled.preempted)
# Update new running requests.
# By default, vLLM scheduler prioritizes prefills.
# Once chunked prefill is enabled,
# the policy is changed to prioritize decode requests.
self.running.extend(
[s.seq_group for s in swapped_in.decode_seq_groups])
self.running.extend(
[s.seq_group for s in swapped_in.prefill_seq_groups])
self.running.extend(
[s.seq_group for s in running_scheduled.decode_seq_groups])
self.running.extend(
[s.seq_group for s in running_scheduled.prefill_seq_groups])
self.running.extend([s.seq_group for s in prefills.seq_groups])
# Update swapped requests.
self.swapped.extend(running_scheduled.swapped_out)
return SchedulerOutputs(
scheduled_seq_groups=(prefills.seq_groups +
running_scheduled.prefill_seq_groups +
swapped_in.prefill_seq_groups +
running_scheduled.decode_seq_groups +
swapped_in.decode_seq_groups),
num_prefill_groups=(len(prefills.seq_groups) +
len(swapped_in.prefill_seq_groups) +
len(running_scheduled.prefill_seq_groups)),
num_batched_tokens=budget.num_batched_tokens,
blocks_to_swap_in=swapped_in.blocks_to_swap_in,
blocks_to_swap_out=running_scheduled.blocks_to_swap_out,
blocks_to_copy=running_scheduled.blocks_to_copy +
swapped_in.blocks_to_copy,
ignored_seq_groups=prefills.ignored_seq_groups +
swapped_in.infeasible_seq_groups,
num_lookahead_slots=running_scheduled.num_lookahead_slots,
running_queue_size=len(self.running),
preempted=(len(running_scheduled.preempted) +
len(running_scheduled.swapped_out)),
)
def _schedule(self) -> SchedulerOutputs:
"""Schedule queued requests."""
if self.scheduler_config.chunked_prefill_enabled:
return self._schedule_chunked_prefill()
else:
return self._schedule_default()
def _can_append_slots(self, seq_group: SequenceGroup,
enable_chunking: bool) -> bool:
"""Determine whether or not we have enough space in the KV cache to
continue generation of the sequence group.
"""
# It is True only for testing case to trigger artificial preemption.
if (self.enable_artificial_preemption
and random.uniform(0, 1) < ARTIFICIAL_PREEMPTION_PROB
and self.artificial_preempt_cnt > 0):
self.artificial_preempt_cnt -= 1
return False
is_prefill = seq_group.is_prefill()
num_lookahead_slots = self._get_num_lookahead_slots(
is_prefill, enable_chunking)
if is_prefill and num_lookahead_slots > 0:
# Appending prefill slots only happens multi-step and
# chunked-prefill are enabled together.
assert self.scheduler_config.is_multi_step and enable_chunking
return self.block_manager.can_append_slots(
seq_group=seq_group, num_lookahead_slots=num_lookahead_slots)
def _allow_async_output_proc(self, seq_group: SequenceGroup) -> bool:
# async_output_proc is allowed only when we have a single sequence
# in the sequence group
no_single_seq = seq_group.sampling_params is None or (
seq_group.sampling_params.best_of == 1)
return no_single_seq
def schedule(
self
) -> Tuple[List[SequenceGroupMetadata], SchedulerOutputs, bool]:
# Schedule sequence groups.
# This function call changes the internal states of the scheduler
# such as self.running, self.swapped, and self.waiting.
scheduler_start_time = time.perf_counter()
scheduler_outputs: SchedulerOutputs = self._schedule()
now = time.time()
if not self.cache_config.enable_prefix_caching:
common_computed_block_nums = []
allow_async_output_proc: bool = self.use_async_output_proc
# Create input data structures.
seq_group_metadata_list: List[SequenceGroupMetadata] = []
for i, scheduled_seq_group in enumerate(
scheduler_outputs.scheduled_seq_groups):
seq_group = scheduled_seq_group.seq_group
token_chunk_size = scheduled_seq_group.token_chunk_size
seq_group.maybe_set_first_scheduled_time(now)
seq_group_metadata = self._seq_group_metadata_cache[
self.cache_id].get_object()
seq_group_metadata.seq_data.clear()
seq_group_metadata.block_tables.clear()
# seq_id -> SequenceData
seq_data: Dict[int, SequenceData] = {}
# seq_id -> physical block numbers
block_tables: Dict[int, List[int]] = {}
if seq_group.is_encoder_decoder():
# Encoder associated with SequenceGroup
encoder_seq = seq_group.get_encoder_seq()
assert encoder_seq is not None
encoder_seq_data = encoder_seq.data
# Block table for cross-attention
# Also managed at SequenceGroup level
cross_block_table = self.block_manager.get_cross_block_table(
seq_group)
else:
encoder_seq_data = None
cross_block_table = None
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
seq_id = seq.seq_id
seq_data[seq_id] = seq.data
block_tables[seq_id] = self.block_manager.get_block_table(seq)
self.block_manager.access_all_blocks_in_seq(seq, now)
if self.cache_config.enable_prefix_caching:
common_computed_block_nums = (
self.block_manager.get_common_computed_block_ids(
seq_group.get_seqs(status=SequenceStatus.RUNNING)))
do_sample = True
is_prompt = seq_group.is_prefill()
# We should send the metadata to workers when the first prefill
# is sent. Subsequent requests could be chunked prefill or decode.
is_first_prefill = False
if is_prompt:
seqs = seq_group.get_seqs()
# Prefill has only 1 sequence.
assert len(seqs) == 1
num_computed_tokens = seqs[0].data.get_num_computed_tokens()
is_first_prefill = num_computed_tokens == 0
# In the next iteration, all prompt tokens are not computed.
# It means the prefill is chunked, and we don't need sampling.
# NOTE: We use get_len instead of get_prompt_len because when
# a sequence is preempted, prefill includes previous generated
# output tokens.
if (token_chunk_size + num_computed_tokens <
seqs[0].data.get_len()):
do_sample = False
# It assumes the scheduled_seq_groups is ordered by
# prefill < decoding.
if is_first_prefill or not self.scheduler_config.send_delta_data:
seq_group_metadata = SequenceGroupMetadata(
request_id=seq_group.request_id,
is_prompt=is_prompt,
seq_data=seq_data,
sampling_params=seq_group.sampling_params,
block_tables=block_tables,
do_sample=do_sample,
pooling_params=seq_group.pooling_params,
token_chunk_size=token_chunk_size,
lora_request=seq_group.lora_request,
computed_block_nums=common_computed_block_nums,
encoder_seq_data=encoder_seq_data,
cross_block_table=cross_block_table,
state=seq_group.state,
# `multi_modal_data` will only be present for the 1st comm
# between engine and worker.
# the subsequent comms can still use delta, but
# `multi_modal_data` will be None.
multi_modal_data=seq_group.multi_modal_data
if scheduler_outputs.num_prefill_groups > 0 else None,
mm_processor_kwargs=seq_group.mm_processor_kwargs,
prompt_adapter_request=seq_group.prompt_adapter_request,
)
else:
# When SPMD mode is enabled, we only send delta data except for
# the first request to reduce serialization cost.
seq_data_delta = {}
for id, data in seq_data.items():
seq_data_delta[id] = data.get_delta_and_reset()
seq_group_metadata = SequenceGroupMetadataDelta(
seq_data_delta,
seq_group.request_id,
block_tables,
is_prompt,
do_sample=do_sample,
token_chunk_size=token_chunk_size,
computed_block_nums=common_computed_block_nums,
)
seq_group_metadata_list.append(seq_group_metadata)
if allow_async_output_proc:
allow_async_output_proc = self._allow_async_output_proc(
seq_group)
# Now that the batch has been created, we can assume all blocks in the
# batch will have been computed before the next scheduling invocation.
# This is because the engine assumes that a failure in model execution
# will crash the vLLM instance / will not retry.
for scheduled_seq_group in scheduler_outputs.scheduled_seq_groups:
self.block_manager.mark_blocks_as_computed(
scheduled_seq_group.seq_group,
scheduled_seq_group.token_chunk_size)
self._seq_group_metadata_cache[self.next_cache_id].reset()
scheduler_time = time.perf_counter() - scheduler_start_time
# Add this to scheduler time to all the sequences that are currently
# running. This will help estimate if the scheduler is a significant
# component in the e2e latency.
for seq_group in self.running:
if seq_group is not None and seq_group.metrics is not None:
if seq_group.metrics.scheduler_time is not None:
seq_group.metrics.scheduler_time += scheduler_time
else:
seq_group.metrics.scheduler_time = scheduler_time
# Move to next cache (if exists)
self.cache_id = self.next_cache_id
# Return results
return (seq_group_metadata_list, scheduler_outputs,
allow_async_output_proc)
def fork_seq(self, parent_seq: Sequence, child_seq: Sequence) -> None:
self.block_manager.fork(parent_seq, child_seq)
def free_seq(self, seq: Sequence) -> None:
"""Free a sequence from a block table."""
self.block_manager.free(seq)
def _free_finished_seqs(self, seq_group: SequenceGroup) -> None:
"""Free finished seqs in a sequence group."""
for seq in seq_group.get_seqs():
if seq.is_finished():
self.free_seq(seq)
def _free_finished_seq_group(self, seq_group: SequenceGroup) -> None:
if seq_group.is_finished():
# Free cross-attention block table, if it exists
self._free_seq_group_cross_attn_blocks(seq_group)
# Add the finished requests to the finished requests list.
# This list will be used to update the Mamba cache in the
# next step.
self._finished_requests_ids.append(seq_group.request_id)
# Free finished seqs
self._free_finished_seqs(seq_group)
def free_finished_seq_groups(self) -> None:
remaining: Deque[SequenceGroup] = deque()
for seq_group in self.running:
self._free_finished_seq_group(seq_group)
if not seq_group.is_finished():
remaining.append(seq_group)
self.running = remaining
# Handle async stopped sequence groups
# (ones that reached max model len)
if self._async_stopped:
for seq_group in self._async_stopped:
self._free_seq_group_cross_attn_blocks(seq_group)
self._finished_requests_ids.append(seq_group.request_id)
# Free finished seqs
self._free_finished_seqs(seq_group)
self._async_stopped.clear()
def _allocate_and_set_running(self, seq_group: SequenceGroup) -> None:
self.block_manager.allocate(seq_group)
for seq in seq_group.get_seqs(status=SequenceStatus.WAITING):
seq.status = SequenceStatus.RUNNING
def _append_slots(self,
seq_group: SequenceGroup,
blocks_to_copy: List[Tuple[int, int]],
enable_chunking: bool = False) -> None:
"""Appends new slots to the sequences in the given sequence group.
Args:
seq_group (SequenceGroup): The sequence group containing the
sequences to append slots to.
blocks_to_copy (List[Tuple[int, int]]): A list of tuple of two
ints, the first int is the source block index, and the second
int is the destination block index. This list is updated with
the new source and destination block indices for the appended
slots.
enable_chunking (bool): True if chunked prefill is enabled.
"""
is_prefill: bool = seq_group.is_prefill()
num_lookahead_slots: int = self._get_num_lookahead_slots(
is_prefill, enable_chunking)
seq_group.init_multi_step_from_lookahead_slots(
num_lookahead_slots,
num_scheduler_steps=self.scheduler_config.num_scheduler_steps,
is_multi_step=self.scheduler_config.is_multi_step,
enable_chunking=enable_chunking)
seq_status: Optional[SequenceStatus] = SequenceStatus.RUNNING
if self.scheduler_config.is_multi_step and enable_chunking:
# In multi-step chunked-prefill any sequence type can have
# slots appended.
seq_status = None
for seq in seq_group.get_seqs(status=seq_status):
cows = self.block_manager.append_slots(seq, num_lookahead_slots)
if len(cows) > 0:
blocks_to_copy.extend(cows)
def _preempt(
self,
seq_group: SequenceGroup,
blocks_to_swap_out: List[Tuple[int, int]],
preemption_mode: Optional[PreemptionMode] = None,
) -> PreemptionMode:
# If preemption mode is not specified, we determine the mode as follows:
# We use recomputation by default since it incurs lower overhead than
# swapping. However, when the sequence group has multiple sequences
# (e.g., beam search), recomputation is not currently supported. In
# such a case, we use swapping instead.
# FIXME(woosuk): This makes our scheduling policy a bit bizarre.
# As swapped sequences are prioritized over waiting sequences,
# sequence groups with multiple sequences are implicitly prioritized
# over sequence groups with a single sequence.
# TODO(woosuk): Support recomputation for sequence groups with multiple
# sequences. This may require a more sophisticated CUDA kernel.
if self.user_specified_preemption_mode is None:
if seq_group.get_max_num_running_seqs() == 1:
preemption_mode = PreemptionMode.RECOMPUTE
else:
preemption_mode = PreemptionMode.SWAP
elif self.user_specified_preemption_mode == "swap":
preemption_mode = PreemptionMode.SWAP
else:
preemption_mode = PreemptionMode.RECOMPUTE
if self.num_cumulative_preemption % 50 == 0:
logger.warning(
"Sequence group %s is preempted by %s mode because there is "
"not enough KV cache space. This can affect the end-to-end "
"performance. Increase gpu_memory_utilization or "
"tensor_parallel_size to provide more KV cache memory. "
"total_num_cumulative_preemption=%d", seq_group.request_id,
preemption_mode, self.num_cumulative_preemption + 1)
self.num_cumulative_preemption += 1
if preemption_mode == PreemptionMode.RECOMPUTE:
self._preempt_by_recompute(seq_group)
elif preemption_mode == PreemptionMode.SWAP:
self._preempt_by_swap(seq_group, blocks_to_swap_out)
else:
raise AssertionError("Invalid preemption mode.")
return preemption_mode
def _preempt_by_recompute(
self,
seq_group: SequenceGroup,
) -> None:
seqs = seq_group.get_seqs(status=SequenceStatus.RUNNING)
assert len(seqs) == 1
for seq in seqs:
seq.status = SequenceStatus.WAITING
self.free_seq(seq)
seq.reset_state_for_recompute()
def _preempt_by_swap(
self,
seq_group: SequenceGroup,
blocks_to_swap_out: List[Tuple[int, int]],
) -> None:
self._swap_out(seq_group, blocks_to_swap_out)
def _swap_in(
self,
seq_group: SequenceGroup,
blocks_to_swap_in: List[Tuple[int, int]],
) -> None:
mapping = self.block_manager.swap_in(seq_group)
blocks_to_swap_in.extend(mapping)
for seq in seq_group.get_seqs(status=SequenceStatus.SWAPPED):
seq.status = SequenceStatus.RUNNING
def _swap_out(
self,
seq_group: SequenceGroup,
blocks_to_swap_out: List[Tuple[int, int]],
) -> None:
if not self.block_manager.can_swap_out(seq_group):
# FIXME(woosuk): Abort the sequence group instead of aborting the
# entire engine.
raise RuntimeError(
"Aborted due to the lack of CPU swap space. Please increase "
"the swap space to avoid this error.")
mapping = self.block_manager.swap_out(seq_group)
blocks_to_swap_out.extend(mapping)
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
seq.status = SequenceStatus.SWAPPED
def _passed_delay(self, now: float) -> bool:
if self.prev_prompt:
self.last_prompt_latency = now - self.prev_time
self.prev_time, self.prev_prompt = now, False
# Delay scheduling prompts to let waiting queue fill up
if self.scheduler_config.delay_factor > 0 and self.waiting:
earliest_arrival_time = min(
[e.metrics.arrival_time for e in self.waiting])
passed_delay = (
(now - earliest_arrival_time) >
(self.scheduler_config.delay_factor * self.last_prompt_latency)
or not self.running)
else:
passed_delay = True
return passed_delay
def _get_num_lookahead_slots(self, is_prefill: bool,
enable_chunking: bool) -> int:
"""The number of slots to allocate per sequence per step, beyond known
token ids. Speculative decoding uses these slots to store KV activations
of tokens which may or may not be accepted.
Speculative decoding does not yet support prefill, so we do not perform
lookahead allocation for prefill.
When chunking is enabled with multi-step, we allocate lookahead slots
for the prefills for when the prefills turn into decodes in the first
step.
"""
if is_prefill:
if self.scheduler_config.is_multi_step and enable_chunking:
# num_lookahead_slots was introduced in the context of decodes,
# in Speculative Decoding.
# When the num_scheduler_steps is 8, say, then the
# num_lookahead_slots is 7. Meaning, we are doing a 1-step of
# decode anyways and we wish to do 7 more.
#
# "lookaheads" for prefills, is introduced in support for
# Chunked-Prefill in Multi-Step.
return self.scheduler_config.num_lookahead_slots + 1
else:
return 0
return self.scheduler_config.num_lookahead_slots
def _get_num_new_tokens(self, seq_group: SequenceGroup,
status: SequenceStatus, enable_chunking: bool,
budget: SchedulingBudget) -> int:
"""Get the next new tokens to compute for a given sequence group
that's in a given `status`.
The API could chunk the number of tokens to compute based on `budget`
if `enable_chunking` is True. If a sequence group has multiple
sequences (e.g., running beam search), it means it is in decoding
phase, so chunking doesn't happen.
Returns 0 if the new token cannot be computed due to token budget.
"""
num_new_tokens = 0
seqs = seq_group.get_seqs(status=status)
for seq in seqs:
num_new_tokens += seq.get_num_new_tokens()
assert num_new_tokens > 0
# Chunk if a running request cannot fit in the given budget.
# If number of seq > 1, it means it is doing beam search
# in a decode phase. Do not chunk.
if enable_chunking and len(seqs) == 1:
remaining_token_budget = budget.remaining_token_budget()
if self.scheduler_config.is_multi_step:
# The current multi-step + chunked prefill capability does
# not actually support chunking prompts.
#
# Therefore, `num_new_tokens` is computed in the same fashion
# for both multi-step+chunked-prefill &
# multi-step+chunked-prefill+APC
#
# Prompts with more tokens than the current remaining budget
# are postponed to future scheduler steps
if num_new_tokens > self._get_prompt_limit(seq_group):
# If the seq_group is in prompt-stage, pass the
# num_new_tokens as-is so the caller can ignore
# the sequence.
pass
else:
num_new_tokens = 0 \
if num_new_tokens > remaining_token_budget \
else num_new_tokens
elif self.cache_config.enable_prefix_caching:
# When prefix caching is enabled, we always allocate
# the number of new tokens that is dividable by the block
# size to avoid partial block matching.
block_size = self.cache_config.block_size
remainder = budget.token_budget % block_size
if remainder != 0:
raise ValueError("When enabling chunked prefill and "
"prefix caching, max_num_batched_tokens "
"(chunk size) must be dividable by "
"block size, but got chunk_size "
f"({budget.token_budget}) % block_size "
f"({block_size}) = {remainder}")
if remaining_token_budget < num_new_tokens:
num_new_tokens = (remaining_token_budget //
block_size) * block_size
else:
num_new_tokens = min(num_new_tokens, remaining_token_budget)
return num_new_tokens