313 lines
13 KiB
Python
313 lines
13 KiB
Python
# coding=utf-8
|
|
# Adapted from https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/opt/modeling_opt.py
|
|
# Copyright 2023 The CacheFlow team.
|
|
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only OPT model compatible with HuggingFace weights.
|
|
|
|
The input of the model is flattened to a 1D tensor of tokens. The model uses
|
|
InputMetadata to extract the original 2D shape of the input.
|
|
"""
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import OPTConfig
|
|
|
|
from cacheflow.model_executor.input_metadata import InputMetadata
|
|
from cacheflow.model_executor.layers.attention import GPTCacheFlowAttention
|
|
from cacheflow.model_executor.layers.sampler import Sampler
|
|
from cacheflow.model_executor.weight_utils import (hf_model_weights_iterator,
|
|
load_tensor_parallel_weights)
|
|
from cacheflow.model_executor.parallel_utils.parallel_state import (
|
|
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
|
|
from cacheflow.model_executor.parallel_utils.tensor_parallel import (
|
|
VocabParallelEmbedding, ColumnParallelLinear, RowParallelLinear)
|
|
from cacheflow.sequence import SequenceOutputs
|
|
|
|
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
|
|
|
|
|
class OPTLearnedPositionalEmbedding(nn.Embedding):
|
|
|
|
def __init__(self, num_embeddings: int, embedding_dim: int):
|
|
# OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
|
|
# and adjust num_embeddings appropriately. Other models don't have this hack
|
|
self.offset = 2
|
|
super().__init__(num_embeddings + self.offset, embedding_dim)
|
|
|
|
def forward(self, positions: torch.Tensor):
|
|
return super().forward(positions + self.offset)
|
|
|
|
|
|
class OPTAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
num_heads: int,
|
|
bias: bool = True,
|
|
) -> None:
|
|
super().__init__()
|
|
self.embed_dim = embed_dim
|
|
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
|
|
total_num_heads = num_heads
|
|
assert num_heads % tensor_model_parallel_world_size == 0
|
|
self.num_heads = total_num_heads // tensor_model_parallel_world_size
|
|
self.head_dim = embed_dim // total_num_heads
|
|
self.scaling = self.head_dim ** -0.5
|
|
|
|
self.qkv_proj = ColumnParallelLinear(embed_dim, 3 * embed_dim, bias=bias,
|
|
gather_output=False,
|
|
perform_initialization=False)
|
|
self.out_proj = RowParallelLinear(embed_dim, embed_dim, bias=bias,
|
|
input_is_parallel=True,
|
|
perform_initialization=False)
|
|
self.attn = GPTCacheFlowAttention(self.num_heads, self.head_dim,
|
|
scale=self.scaling)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: KVCache,
|
|
input_metadata: InputMetadata,
|
|
cache_event: Optional[torch.cuda.Event],
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
|
key_cache, value_cache = kv_cache
|
|
attn_output = self.attn(
|
|
q, k, v, key_cache, value_cache, input_metadata, cache_event)
|
|
output, _ = self.out_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class OPTDecoderLayer(nn.Module):
|
|
|
|
def __init__(self, config: OPTConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.self_attn = OPTAttention(
|
|
embed_dim=self.embed_dim,
|
|
num_heads=config.num_attention_heads,
|
|
bias=config.enable_bias,
|
|
)
|
|
self.do_layer_norm_before = config.do_layer_norm_before
|
|
assert config.activation_function == 'relu'
|
|
self.activation_fn = nn.ReLU()
|
|
|
|
self.self_attn_layer_norm = nn.LayerNorm(
|
|
self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
|
|
self.fc1 = ColumnParallelLinear(self.embed_dim, config.ffn_dim,
|
|
bias=config.enable_bias,
|
|
gather_output=False,
|
|
perform_initialization=False)
|
|
self.fc2 = RowParallelLinear(config.ffn_dim, self.embed_dim,
|
|
bias=config.enable_bias,
|
|
input_is_parallel=True,
|
|
perform_initialization=False)
|
|
self.final_layer_norm = nn.LayerNorm(
|
|
self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: KVCache,
|
|
input_metadata: InputMetadata,
|
|
cache_event: Optional[torch.cuda.Event],
|
|
) -> torch.Tensor:
|
|
# Self Attention
|
|
residual = hidden_states
|
|
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
|
|
if self.do_layer_norm_before:
|
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
hidden_states = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
kv_cache=kv_cache,
|
|
input_metadata=input_metadata,
|
|
cache_event=cache_event)
|
|
hidden_states = residual + hidden_states
|
|
# 350m applies layer norm AFTER attention
|
|
if not self.do_layer_norm_before:
|
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
|
|
# Fully Connected
|
|
residual = hidden_states
|
|
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
|
|
if self.do_layer_norm_before:
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
hidden_states, _ = self.fc1(hidden_states)
|
|
hidden_states = self.activation_fn(hidden_states)
|
|
hidden_states, _ = self.fc2(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
# 350m applies layer norm AFTER attention
|
|
if not self.do_layer_norm_before:
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class OPTDecoder(nn.Module):
|
|
|
|
def __init__(self, config: OPTConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.padding_idx = config.pad_token_id
|
|
self.max_target_positions = config.max_position_embeddings
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
|
|
config.word_embed_proj_dim,
|
|
perform_initialization=False)
|
|
# Positional embeddings are replicated (not sharded).
|
|
self.embed_positions = OPTLearnedPositionalEmbedding(
|
|
config.max_position_embeddings, config.hidden_size)
|
|
|
|
# Project out & in will be replicated if they exist.
|
|
if config.word_embed_proj_dim != config.hidden_size:
|
|
self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False)
|
|
else:
|
|
self.project_out = None
|
|
|
|
if config.word_embed_proj_dim != config.hidden_size:
|
|
self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False)
|
|
else:
|
|
self.project_in = None
|
|
|
|
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
|
|
# with checkpoints that have been fine-tuned before transformers v4.20.1
|
|
# see https://github.com/facebookresearch/metaseq/pull/164
|
|
if config.do_layer_norm_before and not config._remove_final_layer_norm:
|
|
self.final_layer_norm = nn.LayerNorm(
|
|
config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine
|
|
)
|
|
else:
|
|
self.final_layer_norm = None
|
|
|
|
self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[KVCache],
|
|
input_metadata: InputMetadata,
|
|
cache_events: Optional[List[torch.cuda.Event]],
|
|
) -> torch.Tensor:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
pos_embeds = self.embed_positions(positions)
|
|
if self.project_in is not None:
|
|
inputs_embeds = self.project_in(inputs_embeds)
|
|
hidden_states = inputs_embeds + pos_embeds
|
|
|
|
for i in range(len(self.layers)):
|
|
if cache_events is None:
|
|
cache_event = None
|
|
else:
|
|
cache_event = cache_events[i]
|
|
layer = self.layers[i]
|
|
hidden_states = layer(
|
|
hidden_states, kv_caches[i], input_metadata, cache_event)
|
|
|
|
if self.final_layer_norm is not None:
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
if self.project_out is not None:
|
|
hidden_states = self.project_out(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class OPTModel(nn.Module):
|
|
|
|
def __init__(self, config: OPTConfig):
|
|
super().__init__()
|
|
self.decoder = OPTDecoder(config)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[KVCache],
|
|
input_metadata: InputMetadata,
|
|
cache_events: Optional[List[torch.cuda.Event]],
|
|
) -> torch.Tensor:
|
|
return self.decoder(
|
|
input_ids, positions, kv_caches, input_metadata, cache_events)
|
|
|
|
|
|
class OPTForCausalLM(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.model = OPTModel(config)
|
|
# TODO(zhuohan): create a new weight after implementing pipeline
|
|
# parallelism
|
|
self.lm_head_weight = self.model.decoder.embed_tokens.weight
|
|
self.sampler = Sampler(config.vocab_size)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[KVCache],
|
|
input_metadata: InputMetadata,
|
|
cache_events: Optional[List[torch.cuda.Event]],
|
|
) -> Dict[int, SequenceOutputs]:
|
|
hidden_states = self.model(
|
|
input_ids, positions, kv_caches, input_metadata, cache_events)
|
|
next_tokens = self.sampler(
|
|
self.lm_head_weight, hidden_states, input_metadata)
|
|
return next_tokens
|
|
|
|
_column_parallel_weights = ["embed_tokens.weight", "fc1.weight", "fc1.bias"]
|
|
_row_parallel_weights = ["out_proj.weight", "fc2.weight"]
|
|
|
|
def load_weights(self, model_name_or_path: str,
|
|
cache_dir: Optional[str] = None,
|
|
use_np_cache: bool = False):
|
|
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
|
|
state_dict = self.state_dict()
|
|
|
|
for name, loaded_weight in hf_model_weights_iterator(
|
|
model_name_or_path, cache_dir, use_np_cache):
|
|
if "lm_head.weight" in name:
|
|
continue
|
|
|
|
if name.startswith("decoder."):
|
|
name = "model." + name
|
|
|
|
is_attention_weight = False
|
|
for stride_id, att_weight_name in enumerate(["q_proj", "k_proj", "v_proj"]):
|
|
if att_weight_name not in name:
|
|
continue
|
|
param = state_dict[name.replace(att_weight_name, "qkv_proj")]
|
|
shard_size = param.shape[0] // 3
|
|
loaded_weight = loaded_weight[
|
|
shard_size * tensor_model_parallel_rank
|
|
:shard_size * (tensor_model_parallel_rank + 1)]
|
|
param_slice = param.data[shard_size * stride_id
|
|
:shard_size * (stride_id + 1)]
|
|
assert param_slice.shape == loaded_weight.shape
|
|
param_slice.copy_(loaded_weight)
|
|
is_attention_weight = True
|
|
break
|
|
if is_attention_weight:
|
|
continue
|
|
|
|
param = state_dict[name]
|
|
load_tensor_parallel_weights(param, loaded_weight, name,
|
|
self._column_parallel_weights,
|
|
self._row_parallel_weights,
|
|
tensor_model_parallel_rank)
|