Jeff Daily a1c8f3796c
dynamic distpatch of fp8 kernels (#14245)
Signed-off-by: Jeff Daily <jeff.daily@amd.com>
2025-03-11 10:54:56 -04:00

715 lines
32 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from typing import Any, Callable, Dict, List, Optional
import torch
import torch.nn.functional as F
from torch.nn import Module
from torch.nn.parameter import Parameter
import vllm.envs as envs
from vllm import _custom_ops as ops
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.logger import init_logger
from vllm.model_executor.layers.fused_moe import (FusedMoE, FusedMoEMethodBase,
FusedMoeWeightScaleSupported)
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
UnquantizedLinearMethod)
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod
from vllm.model_executor.layers.quantization.utils.marlin_utils_fp8 import (
apply_fp8_marlin_linear, prepare_fp8_layer_for_marlin)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
is_layer_skipped)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
Fp8LinearOp, all_close_1d, convert_to_channelwise,
cutlass_block_fp8_supported, cutlass_fp8_supported,
maybe_create_device_identity, normalize_e4m3fn_to_e4m3fnuz,
per_tensor_dequantize, requantize_with_max_scale)
from vllm.model_executor.parameter import (BlockQuantScaleParameter,
ModelWeightParameter,
PerTensorScaleParameter)
from vllm.model_executor.utils import set_weight_attrs
from vllm.platforms import current_platform
ACTIVATION_SCHEMES = ["static", "dynamic"]
logger = init_logger(__name__)
class Fp8Config(QuantizationConfig):
"""Config class for FP8."""
def __init__(
self,
is_checkpoint_fp8_serialized: bool = False,
activation_scheme: str = "dynamic",
ignored_layers: Optional[List[str]] = None,
weight_block_size: Optional[List[int]] = None,
) -> None:
super().__init__()
self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized
if is_checkpoint_fp8_serialized:
logger.warning("Detected fp8 checkpoint. Please note that the "
"format is experimental and subject to change.")
if activation_scheme not in ACTIVATION_SCHEMES:
raise ValueError(
f"Unsupported activation scheme {activation_scheme}")
self.activation_scheme = activation_scheme
self.ignored_layers = ignored_layers or []
if weight_block_size is not None:
if not is_checkpoint_fp8_serialized:
raise ValueError(
"The block-wise quantization only supports fp8-serialized "
"checkpoint for now.")
if len(weight_block_size) != 2:
raise ValueError(
"The quantization block size of weight must have 2 "
f"dimensions, but got {len(weight_block_size)} dimensions")
if activation_scheme != "dynamic":
raise ValueError("The block-wise quantization only supports "
"dynamic activation scheme for now, but got "
f"{activation_scheme} activation scheme.")
self.weight_block_size = weight_block_size
@classmethod
def get_name(cls) -> str:
return "fp8"
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
return [torch.bfloat16, torch.half]
@classmethod
def get_min_capability(cls) -> int:
return 80
@classmethod
def get_config_filenames(cls) -> List[str]:
return []
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "Fp8Config":
quant_method = cls.get_from_keys(config, ["quant_method"])
is_checkpoint_fp8_serialized = ("fp8" in quant_method)
activation_scheme = cls.get_from_keys(config, ["activation_scheme"])
ignored_layers = cls.get_from_keys_or(config, ["ignored_layers"], None)
weight_block_size = cls.get_from_keys_or(config, ["weight_block_size"],
None)
return cls(is_checkpoint_fp8_serialized=is_checkpoint_fp8_serialized,
activation_scheme=activation_scheme,
ignored_layers=ignored_layers,
weight_block_size=weight_block_size)
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["QuantizeMethodBase"]:
from vllm.attention.layer import Attention # Avoid circular import
if isinstance(layer, LinearBase):
if is_layer_skipped(prefix, self.ignored_layers):
return UnquantizedLinearMethod()
return Fp8LinearMethod(self)
elif isinstance(layer, FusedMoE):
return Fp8MoEMethod(self)
elif isinstance(layer, Attention):
return Fp8KVCacheMethod(self)
return None
class Fp8LinearMethod(LinearMethodBase):
"""Linear method for FP8.
Supports loading FP8 checkpoints with static weight scale and
dynamic/static activation scale.
Also supports loading quantized FP16/BF16 model checkpoints with dynamic
activation scaling. The weight scaling factor will be initialized after
the model weights are loaded.
Limitations:
1. Only support per-tensor quantization due to torch._scaled_mm support.
2. Only support float8_e4m3fn data type due to the limitation of
torch._scaled_mm (https://github.com/pytorch/pytorch/blob/2e48b39603411a41c5025efbe52f89560b827825/aten/src/ATen/native/cuda/Blas.cpp#L854-L856)
Args:
quant_config: The quantization config.
"""
def __init__(self, quant_config: Fp8Config):
self.quant_config = quant_config
self.cutlass_block_fp8_supported = cutlass_block_fp8_supported()
# For GPUs that lack FP8 hardware support, we can leverage the Marlin
# kernel for fast weight-only FP8 quantization
self.use_marlin = (not current_platform.has_device_capability(89)
or envs.VLLM_TEST_FORCE_FP8_MARLIN)
# Disable marlin for rocm
if current_platform.is_rocm():
self.use_marlin = False
self.block_quant = self.quant_config.weight_block_size is not None
if self.block_quant:
# Marlin doesn't support block-wise fp8
self.use_marlin = False
self.fp8_linear = Fp8LinearOp(
# Default to using per_token quantization if cutlass is supported
use_per_token_if_dynamic=cutlass_fp8_supported())
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: List[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
maybe_create_device_identity()
output_size_per_partition = sum(output_partition_sizes)
weight_loader = extra_weight_attrs.get("weight_loader")
if self.block_quant:
tp_size = get_tensor_model_parallel_world_size()
assert self.quant_config.weight_block_size is not None
block_n, block_k = (
self.quant_config.weight_block_size[0],
self.quant_config.weight_block_size[1],
)
# Required by row parallel
if (tp_size > 1
and input_size // input_size_per_partition == tp_size
and input_size_per_partition % block_k != 0):
raise ValueError(
f"Weight input_size_per_partition = "
f"{input_size_per_partition} is not divisible by "
f"weight quantization block_k = {block_k}.")
# Required by column parallel or enabling merged weights
if (tp_size > 1 and output_size // output_size_per_partition
== tp_size) or len(output_partition_sizes) > 1:
for output_partition_size in output_partition_sizes:
if output_partition_size % block_n != 0:
raise ValueError(
f"Weight output_partition_size = "
f"{output_partition_size} is not divisible by "
f"weight quantization block_n = {block_n}.")
layer.logical_widths = output_partition_sizes
layer.input_size_per_partition = input_size_per_partition
layer.output_size_per_partition = output_size_per_partition
layer.orig_dtype = params_dtype
# WEIGHT
weight_dtype = (torch.float8_e4m3fn
if self.quant_config.is_checkpoint_fp8_serialized else
params_dtype)
weight = ModelWeightParameter(data=torch.empty(
output_size_per_partition,
input_size_per_partition,
dtype=weight_dtype),
input_dim=1,
output_dim=0,
weight_loader=weight_loader)
layer.register_parameter("weight", weight)
# If checkpoint is serialized fp8, load them.
# Otherwise, wait until process_weights_after_loading.
if self.quant_config.is_checkpoint_fp8_serialized:
# WEIGHT SCALE
if not self.block_quant:
scale = PerTensorScaleParameter(
data=torch.empty(len(output_partition_sizes),
dtype=torch.float32),
weight_loader=weight_loader,
)
scale[:] = torch.finfo(torch.float32).min
layer.register_parameter("weight_scale", scale)
else:
assert self.quant_config.activation_scheme == "dynamic"
scale = BlockQuantScaleParameter(
data=torch.empty(
(output_size_per_partition + block_n - 1) // block_n,
(input_size_per_partition + block_k - 1) // block_k,
dtype=torch.float32,
),
input_dim=1,
output_dim=0,
weight_loader=weight_loader,
)
scale[:] = torch.finfo(torch.float32).min
# The weight_scale_inv name is intentional for deepseekv3
layer.register_parameter("weight_scale_inv", scale)
# INPUT ACTIVATION SCALE
if self.quant_config.activation_scheme == "static":
scale = PerTensorScaleParameter(data=torch.empty(
len(output_partition_sizes), dtype=torch.float32),
weight_loader=weight_loader)
scale[:] = torch.finfo(torch.float32).min
layer.register_parameter("input_scale", scale)
else:
layer.register_parameter("input_scale", None)
def add_padding_to_weight(self, weight: torch.Tensor) -> torch.Tensor:
# Pad the weight tensor. This is an optimization on ROCm platform, which
# can benefit from tensors located far enough from one another in memory
if (envs.VLLM_ROCM_FP8_PADDING and current_platform.is_rocm()
and weight.stride(-1) == 1
and (weight.stride(-2) * weight.element_size()) % 512 == 0):
num_pad = 256 // weight.element_size()
weight = F.pad(weight, (0, num_pad), "constant", 0)[..., :-num_pad]
torch.cuda.empty_cache()
return weight
def process_weights_after_loading(self, layer: Module) -> None:
# TODO(rob): refactor block quant into separate class.
if self.block_quant:
assert self.quant_config.activation_scheme == "dynamic"
if current_platform.is_fp8_fnuz():
weight, weight_scale_inv, _ = \
normalize_e4m3fn_to_e4m3fnuz(
weight=layer.weight,
weight_scale=layer.weight_scale_inv)
else:
weight = layer.weight.data
weight_scale_inv = layer.weight_scale_inv.data
weight = self.add_padding_to_weight(weight)
# Torch.compile cannot use Parameter subclasses.
layer.weight = Parameter(weight, requires_grad=False)
layer.weight_scale_inv = Parameter(weight_scale_inv,
requires_grad=False)
return
# If checkpoint not serialized fp8, quantize the weights.
if not self.quant_config.is_checkpoint_fp8_serialized:
qweight, weight_scale = ops.scaled_fp8_quant(layer.weight,
scale=None)
# If using marlin (w8a16), kernel uses channelwise weights,
# so extend the weight scales to be channelwise.
if self.use_marlin:
assert weight_scale.numel() == 1
weight_scale = convert_to_channelwise(
weight_scale.expand(len(layer.logical_widths)),
layer.logical_widths)
# Update the layer with the new values.
layer.weight = Parameter(qweight.t(), requires_grad=False)
layer.weight_scale = Parameter(weight_scale, requires_grad=False)
layer.input_scale = None
# If checkpoint is fp8, handle that there are N scales for N
# shards in a fused module
else:
layer.weight_scale = torch.nn.Parameter(layer.weight_scale.data,
requires_grad=False)
if self.quant_config.activation_scheme == "static":
layer.input_scale = torch.nn.Parameter(layer.input_scale.data,
requires_grad=False)
# If using marlin (w8a16), kernel uses channelwise weights,
# so extend the weight scales to be channelwise.
if self.use_marlin:
weight = layer.weight
weight_scale = convert_to_channelwise(layer.weight_scale,
layer.logical_widths)
# If using w8a8, torch._scaled_mm needs per tensor, so
# requantize the logical shards as a single weight.
else:
# Dequant -> Quant with max scale so we can run per tensor.
weight = layer.weight
weight_scale = layer.weight_scale
if current_platform.is_fp8_fnuz():
weight, weight_scale, input_scale = \
normalize_e4m3fn_to_e4m3fnuz(
weight=weight,
weight_scale=weight_scale,
input_scale=layer.input_scale)
if input_scale is not None:
layer.input_scale = Parameter(input_scale,
requires_grad=False)
weight_scale, weight = requantize_with_max_scale(
weight=weight,
weight_scale=weight_scale,
logical_widths=layer.logical_widths,
)
weight = self.add_padding_to_weight(weight)
# Update layer with new values.
layer.weight = Parameter(weight.t(), requires_grad=False)
layer.weight_scale = Parameter(weight_scale, requires_grad=False)
if self.quant_config.activation_scheme == "static":
layer.input_scale = Parameter(layer.input_scale.max(),
requires_grad=False)
if self.use_marlin:
prepare_fp8_layer_for_marlin(layer)
# Activations not quantized for marlin.
del layer.input_scale
def apply(self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
if self.use_marlin:
return apply_fp8_marlin_linear(
input=x,
weight=layer.weight,
weight_scale=layer.weight_scale,
workspace=layer.workspace,
size_n=layer.output_size_per_partition,
size_k=layer.input_size_per_partition,
bias=bias)
if self.block_quant:
assert self.quant_config.weight_block_size is not None
return torch.ops.vllm.apply_w8a8_block_fp8_linear(
input=x,
weight=layer.weight,
block_size=self.quant_config.weight_block_size,
weight_scale=layer.weight_scale_inv,
input_scale=layer.input_scale,
bias=bias,
cutlass_block_fp8_supported=self.cutlass_block_fp8_supported,
)
return self.fp8_linear.apply(input=x,
weight=layer.weight,
weight_scale=layer.weight_scale,
input_scale=layer.input_scale,
bias=bias)
class Fp8MoEMethod(FusedMoEMethodBase):
"""MoE method for FP8.
Supports loading FP8 checkpoints with static weight scale and
dynamic/static activation scale.
Also supports loading quantized FP16/BF16 model checkpoints with dynamic
activation scaling. The weight scaling factor will be initialized after
the model weights are loaded.
Args:
quant_config: The quantization config.
"""
def __init__(self, quant_config: Fp8Config):
self.quant_config = quant_config
self.block_quant = self.quant_config.weight_block_size is not None
def create_weights(self, layer: Module, num_experts: int, hidden_size: int,
intermediate_size_per_partition: int,
params_dtype: torch.dtype, **extra_weight_attrs):
if self.quant_config.is_checkpoint_fp8_serialized:
params_dtype = torch.float8_e4m3fn
if self.block_quant:
assert self.quant_config.weight_block_size is not None
tp_size = get_tensor_model_parallel_world_size()
block_n, block_k = (
self.quant_config.weight_block_size[0],
self.quant_config.weight_block_size[1],
)
# NOTE: To ensure proper alignment of the block-wise quantization
# scales, the output_size of the weights for both the gate and up
# layers must be divisible by block_n.
# Required by column parallel or enabling merged weights
if intermediate_size_per_partition % block_n != 0:
raise ValueError(
f"The output_size of gate's and up's weight = "
f"{intermediate_size_per_partition} is not divisible by "
f"weight quantization block_n = {block_n}.")
if (tp_size > 1
and intermediate_size_per_partition % block_k != 0):
# Required by row parallel
raise ValueError(
f"The input_size of down's weight = "
f"{intermediate_size_per_partition} is not divisible by "
f"weight quantization block_k = {block_k}.")
# WEIGHTS
w13_weight = torch.nn.Parameter(torch.empty(
num_experts,
2 * intermediate_size_per_partition,
hidden_size,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w13_weight", w13_weight)
set_weight_attrs(w13_weight, extra_weight_attrs)
w2_weight = torch.nn.Parameter(torch.empty(
num_experts,
hidden_size,
intermediate_size_per_partition,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w2_weight", w2_weight)
set_weight_attrs(w2_weight, extra_weight_attrs)
# WEIGHT_SCALES
if not self.block_quant:
# Allocate 2 scales for w1 and w3 respectively.
# They will be combined to a single scale after weight loading.
w13_weight_scale = torch.nn.Parameter(torch.ones(
num_experts, 2, dtype=torch.float32),
requires_grad=False)
w2_weight_scale = torch.nn.Parameter(torch.ones(
num_experts, dtype=torch.float32),
requires_grad=False)
layer.register_parameter("w13_weight_scale", w13_weight_scale)
layer.register_parameter("w2_weight_scale", w2_weight_scale)
else:
w13_weight_scale = torch.nn.Parameter(
torch.ones(
num_experts,
2 * ((intermediate_size_per_partition + block_n - 1) //
block_n),
(hidden_size + block_k - 1) // block_k,
dtype=torch.float32,
),
requires_grad=False,
)
w2_weight_scale = torch.nn.Parameter(
torch.ones(
num_experts,
(hidden_size + block_n - 1) // block_n,
(intermediate_size_per_partition + block_k - 1) // block_k,
dtype=torch.float32,
),
requires_grad=False,
)
layer.register_parameter("w13_weight_scale_inv", w13_weight_scale)
layer.register_parameter("w2_weight_scale_inv", w2_weight_scale)
assert self.quant_config.activation_scheme == "dynamic"
# Add the quantization method used (per tensor/grouped/channel)
# to ensure the weight scales are loaded in properly
extra_weight_attrs.update(
{"quant_method": FusedMoeWeightScaleSupported.BLOCK.
value} if self.block_quant else
{"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
# If loading fp8 checkpoint, pass the weight loaders.
# If loading an fp16 checkpoint, do not (we will quantize in
# process_weights_after_loading()
if self.quant_config.is_checkpoint_fp8_serialized:
set_weight_attrs(w13_weight_scale, extra_weight_attrs)
set_weight_attrs(w2_weight_scale, extra_weight_attrs)
# INPUT_SCALES
if self.quant_config.activation_scheme == "static":
if not self.quant_config.is_checkpoint_fp8_serialized:
raise ValueError(
"Found static activation scheme for checkpoint that "
"was not serialized fp8.")
w13_input_scale = torch.nn.Parameter(torch.ones(
num_experts, dtype=torch.float32),
requires_grad=False)
layer.register_parameter("w13_input_scale", w13_input_scale)
set_weight_attrs(w13_input_scale, extra_weight_attrs)
w2_input_scale = torch.nn.Parameter(torch.ones(
num_experts, dtype=torch.float32),
requires_grad=False)
layer.register_parameter("w2_input_scale", w2_input_scale)
set_weight_attrs(w2_input_scale, extra_weight_attrs)
else:
layer.w13_input_scale = None
layer.w2_input_scale = None
def process_weights_after_loading(self, layer: Module) -> None:
# TODO (rob): refactor block quant into separate class.
if self.block_quant:
assert self.quant_config.activation_scheme == "dynamic"
if current_platform.is_fp8_fnuz():
w13_weight, w13_weight_scale_inv, w13_input_scale = \
normalize_e4m3fn_to_e4m3fnuz(
layer.w13_weight, layer.w13_weight_scale_inv,
layer.w13_input_scale)
w2_weight, w2_weight_scale_inv, w2_input_scale = \
normalize_e4m3fn_to_e4m3fnuz(
layer.w2_weight, layer.w2_weight_scale_inv,
layer.w2_input_scale)
else:
w13_weight = layer.w13_weight.data
w13_weight_scale_inv = layer.w13_weight_scale_inv.data
w2_weight = layer.w2_weight
w2_weight_scale_inv = layer.w2_weight_scale_inv
# torch.compile() cannot use Parameter subclasses.
layer.w13_weight = Parameter(w13_weight, requires_grad=False)
layer.w13_weight_scale_inv = Parameter(w13_weight_scale_inv,
requires_grad=False)
layer.w2_weight = Parameter(w2_weight, requires_grad=False)
layer.w2_weight_scale_inv = Parameter(w2_weight_scale_inv,
requires_grad=False)
return
# If checkpoint is fp16, quantize in place.
if not self.quant_config.is_checkpoint_fp8_serialized:
fp8_dtype = current_platform.fp8_dtype()
w13_weight = torch.empty_like(layer.w13_weight.data,
dtype=fp8_dtype)
w2_weight = torch.empty_like(layer.w2_weight.data, dtype=fp8_dtype)
# Re-initialize w13_scale because we directly quantize
# merged w13 weights and generate a single scaling factor.
layer.w13_weight_scale = torch.nn.Parameter(torch.ones(
layer.local_num_experts,
dtype=torch.float32,
device=w13_weight.device),
requires_grad=False)
for expert in range(layer.local_num_experts):
w13_weight[expert, :, :], layer.w13_weight_scale[
expert] = ops.scaled_fp8_quant(
layer.w13_weight.data[expert, :, :])
w2_weight[expert, :, :], layer.w2_weight_scale[
expert] = ops.scaled_fp8_quant(
layer.w2_weight.data[expert, :, :])
layer.w13_weight = torch.nn.Parameter(w13_weight,
requires_grad=False)
layer.w2_weight = torch.nn.Parameter(w2_weight,
requires_grad=False)
return
# If checkpoint is fp8, we need to handle that the
# MoE kernels require single activation scale and single weight
# scale for w13 per expert.
else:
# Fp8 moe kernels require a single activation scale.
# We take the max of all the scales in case they differ.
if self.quant_config.activation_scheme == "static":
if (layer.w13_input_scale is None
or layer.w2_input_scale is None):
raise ValueError(
"QuantConfig has static quantization, but found "
"activation scales are None.")
if (not all_close_1d(layer.w13_input_scale)
or not all_close_1d(layer.w2_input_scale)):
logger.warning_once(
"Found input_scales that are not equal for "
"fp8 MoE layer. Using the maximum across experts "
"for each layer.")
layer.w13_input_scale = torch.nn.Parameter(
layer.w13_input_scale.max(), requires_grad=False)
layer.w2_input_scale = torch.nn.Parameter(
layer.w2_input_scale.max(), requires_grad=False)
if current_platform.is_fp8_fnuz():
# Normalize the weights and scales
w13_weight, w13_weight_scale, w13_input_scale = \
normalize_e4m3fn_to_e4m3fnuz(
layer.w13_weight, layer.w13_weight_scale,
layer.w13_input_scale)
w2_weight, w2_weight_scale, w2_input_scale = \
normalize_e4m3fn_to_e4m3fnuz(
layer.w2_weight, layer.w2_weight_scale,
layer.w2_input_scale)
# Reset the parameter
layer.w13_weight = torch.nn.Parameter(w13_weight,
requires_grad=False)
layer.w13_weight_scale = torch.nn.Parameter(
w13_weight_scale, requires_grad=False)
if w13_input_scale is not None:
layer.w13_input_scale = torch.nn.Parameter(
w13_input_scale, requires_grad=False)
layer.w2_weight = torch.nn.Parameter(w2_weight,
requires_grad=False)
layer.w2_weight_scale = torch.nn.Parameter(w2_weight_scale,
requires_grad=False)
if w2_input_scale is not None:
layer.w2_input_scale = torch.nn.Parameter(
w2_input_scale, requires_grad=False)
# Fp8 moe kernel needs single weight scale for w13 per expert.
# We take the max then dequant and requant each expert.
assert layer.w13_weight_scale is not None
shard_size = layer.intermediate_size_per_partition
max_w13_scales = layer.w13_weight_scale.max(dim=1).values
for expert_id in range(layer.local_num_experts):
start = 0
for shard_id in range(2):
dq_weight = per_tensor_dequantize(
layer.w13_weight[expert_id][start:start +
shard_size, :],
layer.w13_weight_scale[expert_id][shard_id])
layer.w13_weight[expert_id][
start:start + shard_size, :], _ = ops.scaled_fp8_quant(
dq_weight, max_w13_scales[expert_id])
start += shard_size
layer.w13_weight_scale = torch.nn.Parameter(max_w13_scales,
requires_grad=False)
return
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
activation: str = "silu",
) -> torch.Tensor:
from vllm.model_executor.layers.fused_moe import fused_experts
topk_weights, topk_ids = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias,
)
return fused_experts(
x,
layer.w13_weight,
layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=True,
activation=activation,
use_fp8_w8a8=True,
global_num_experts=global_num_experts,
expert_map=expert_map,
w1_scale=(layer.w13_weight_scale_inv
if self.block_quant else layer.w13_weight_scale),
w2_scale=(layer.w2_weight_scale_inv
if self.block_quant else layer.w2_weight_scale),
a1_scale=layer.w13_input_scale,
a2_scale=layer.w2_input_scale,
block_shape=self.quant_config.weight_block_size,
)
class Fp8KVCacheMethod(BaseKVCacheMethod):
"""
Supports loading kv-cache scaling factors from FP8 checkpoints.
"""
def __init__(self, quant_config: Fp8Config):
super().__init__(quant_config)