vllm/tests/kernels/test_mha_attn.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

128 lines
4.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""
Test:
* Tests for MultiHeadAttention layer
"""
from unittest.mock import patch
import pytest
import torch
from vllm.attention.layer import MultiHeadAttention
from vllm.attention.selector import _Backend, _cached_get_attn_backend
from vllm.platforms import current_platform
from vllm.platforms.cpu import CpuPlatform
from vllm.platforms.cuda import CudaPlatform
from vllm.platforms.rocm import RocmPlatform
@pytest.fixture(autouse=True)
def clear_cache():
"""Clear lru cache to ensure each test case runs without caching.
"""
_cached_get_attn_backend.cache_clear()
@pytest.mark.parametrize("device", ["cpu", "hip", "cuda"])
def test_mha_attn_platform(device: str):
"""
Test the attention selector between different platform and device.
"""
torch.set_default_dtype(torch.float16)
if device == "cpu":
with patch("vllm.attention.selector.current_platform", CpuPlatform()):
attn = MultiHeadAttention(16, 64, scale=1)
assert attn.attn_backend == _Backend.TORCH_SDPA
elif device == "hip":
with patch("vllm.attention.selector.current_platform", RocmPlatform()):
attn = MultiHeadAttention(16, 64, scale=1)
assert attn.attn_backend == _Backend.TORCH_SDPA
else:
with patch("vllm.attention.selector.current_platform", CudaPlatform()):
attn = MultiHeadAttention(16, 64, scale=1)
assert attn.attn_backend == _Backend.XFORMERS
with patch("vllm.attention.selector.current_platform", CudaPlatform()):
attn = MultiHeadAttention(16, 72, scale=1)
assert attn.attn_backend == _Backend.XFORMERS
def ref_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
scale: float,
) -> torch.Tensor:
"""
Native implementation of scaled dot product attention without mask:
- query, key, value: [batch_size, seq_len, num_heads, head_size]
- attn_mask: [batch_size, seq_len, seq_len]
"""
query, key, value = (x.transpose(1, 2) for x in (query, key, value))
attn_weights = scale * torch.matmul(query, key.transpose(2, 3))
attn_weights = torch.softmax(attn_weights, dim=-1).to(value.dtype)
out = torch.matmul(attn_weights, value).transpose(1, 2)
return out
BATCH_SIZES = [1, 16]
SEQ_LENS = [1]
NUM_HEADS = [1, 16]
NUM_KV_HEADS = [1]
HEAD_SIZES = [64, 80]
# flshattF and tritonflashattF supported: {torch.float16, torch.bfloat16}
DTYPES = [
torch.half, torch.bfloat16, torch.float
] if not current_platform.is_rocm() else [torch.half, torch.bfloat16]
CUDA_DEVICES = ["cuda"]
@pytest.mark.parametrize("batch_size", BATCH_SIZES)
@pytest.mark.parametrize("seq_len", SEQ_LENS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("num_kv_heads", NUM_KV_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_mha_attn_forward(
batch_size: int,
seq_len: int,
num_heads: int,
num_kv_heads: int,
head_size: int,
dtype: torch.dtype,
device: str,
):
current_platform.seed_everything(0)
torch.set_default_device(device)
torch.set_default_dtype(dtype)
q = torch.randn(batch_size, seq_len, num_heads * head_size)
k = torch.randn(batch_size, seq_len, num_kv_heads * head_size)
v = torch.randn(batch_size, seq_len, num_kv_heads * head_size)
scale = 1.0 / head_size**0.5
attn = MultiHeadAttention(num_heads,
head_size,
scale=scale,
num_kv_heads=num_kv_heads)
output = attn(q, k, v)
assert num_heads % num_kv_heads == 0
num_queries_per_kv = num_heads // num_kv_heads
q = q.reshape(batch_size, seq_len, num_heads, head_size)
k = k.reshape(batch_size, seq_len, num_kv_heads, head_size)
v = v.reshape(batch_size, seq_len, num_kv_heads, head_size)
if num_queries_per_kv > 1:
k = torch.repeat_interleave(k, num_queries_per_kv, dim=2)
v = torch.repeat_interleave(v, num_queries_per_kv, dim=2)
ref_output = ref_attention(
q,
k,
v,
scale=scale,
).reshape(batch_size, seq_len, num_heads * head_size)
torch.testing.assert_close(output, ref_output)