1146 lines
48 KiB
Python

# ruff: noqa: SIM117
import collections
import copy
import fnmatch
import glob
import json
import math
import os
from abc import ABC, abstractmethod
from contextlib import contextmanager
from typing import Any, Dict, Generator, List, Optional, Tuple, Type
import gguf
import huggingface_hub
import numpy as np
import torch
from huggingface_hub import HfApi, hf_hub_download
from torch import nn
from transformers import AutoModelForCausalLM, PretrainedConfig
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME
from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoadFormat,
LoRAConfig, ModelConfig, MultiModalConfig,
ParallelConfig, SchedulerConfig)
from vllm.envs import VLLM_USE_MODELSCOPE
from vllm.logger import init_logger
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.model_loader.tensorizer import (
TensorizerConfig, is_vllm_tensorized, load_with_tensorizer,
serialize_vllm_model, tensorizer_weights_iterator)
from vllm.model_executor.model_loader.utils import (get_model_architecture,
set_default_torch_dtype)
from vllm.model_executor.model_loader.weight_utils import (
download_safetensors_index_file_from_hf, download_weights_from_hf,
filter_duplicate_safetensors_files, filter_files_not_needed_for_inference,
get_gguf_extra_tensor_names, get_quant_config, gguf_quant_weights_iterator,
initialize_dummy_weights, np_cache_weights_iterator, pt_weights_iterator,
safetensors_weights_iterator)
from vllm.model_executor.models.interfaces import (has_inner_state,
supports_lora,
supports_multimodal)
from vllm.model_executor.utils import set_weight_attrs
from vllm.platforms import current_platform
from vllm.utils import is_pin_memory_available
@contextmanager
def device_loading_context(module: torch.nn.Module,
target_device: torch.device):
if target_device.type == "cpu":
# If target is CPU, no need to move anything
yield module
return
original_device_states: Dict[str, torch.device] = {}
# Store original device states and move parameters to GPU if they're on CPU
for name, p in module.named_parameters():
if p.device.type == "cpu":
original_device_states[name] = p.device
p.data = p.data.to(target_device)
# Parameters already on target device are not touched
try:
yield module
finally:
# Restore parameters to their original devices, ignoring new parameters
pin_memory = is_pin_memory_available()
for name, p in module.named_parameters():
if name in original_device_states:
original_device: torch.device = original_device_states[name]
if original_device.type == "cpu":
# `torch.empty_like` does not support `pin_memory` argument
cpu_data = torch.empty_strided(size=p.data.size(),
stride=p.data.stride(),
dtype=p.data.dtype,
layout=p.data.layout,
device="cpu",
pin_memory=pin_memory)
cpu_data.copy_(p.data)
p.data = cpu_data
else:
p.data = p.data.to(original_device)
# New parameters or parameters already on target device are untouched
logger = init_logger(__name__)
def _get_quantization_config(
model_config: ModelConfig,
load_config: LoadConfig) -> Optional[QuantizationConfig]:
"""Get the quantization config."""
if model_config.quantization is not None:
quant_config = get_quant_config(model_config, load_config)
if not current_platform.is_tpu():
capability = current_platform.get_device_capability()
capability = capability[0] * 10 + capability[1]
if capability < quant_config.get_min_capability():
raise ValueError(
f"The quantization method {model_config.quantization} "
"is not supported for the current GPU. "
f"Minimum capability: {quant_config.get_min_capability()}. "
f"Current capability: {capability}.")
supported_dtypes = quant_config.get_supported_act_dtypes()
if model_config.dtype not in supported_dtypes:
raise ValueError(
f"{model_config.dtype} is not supported for quantization "
f"method {model_config.quantization}. Supported dtypes: "
f"{supported_dtypes}")
return quant_config
return None
def _get_model_initialization_kwargs(
model_class: Type[nn.Module],
lora_config: Optional[LoRAConfig],
multimodal_config: Optional[MultiModalConfig],
scheduler_config: Optional[SchedulerConfig] = None) -> Dict[str, Any]:
"""Get extra kwargs for model initialization."""
extra_kwargs: Dict[str, Any] = {}
if supports_lora(model_class):
# lora_config=None is used to disable LoRA
extra_kwargs["lora_config"] = lora_config
elif lora_config:
raise ValueError(
f"Model {model_class.__name__} does not support LoRA, "
"but LoRA is enabled. Support for this model may "
"be added in the future. If this is important to you, "
"please open an issue on github.")
if supports_multimodal(model_class):
assert multimodal_config is not None
extra_kwargs["multimodal_config"] = multimodal_config
if has_inner_state(model_class) and scheduler_config:
extra_kwargs["scheduler_config"] = scheduler_config
return extra_kwargs
def build_model(model_class: Type[nn.Module], hf_config: PretrainedConfig,
cache_config: Optional[CacheConfig],
quant_config: Optional[QuantizationConfig], *,
lora_config: Optional[LoRAConfig],
multimodal_config: Optional[MultiModalConfig],
scheduler_config: Optional[SchedulerConfig]) -> nn.Module:
extra_kwargs = _get_model_initialization_kwargs(model_class, lora_config,
multimodal_config,
scheduler_config)
return model_class(config=hf_config,
cache_config=cache_config,
quant_config=quant_config,
**extra_kwargs)
def _initialize_model(
model_config: ModelConfig,
load_config: LoadConfig,
lora_config: Optional[LoRAConfig],
cache_config: CacheConfig,
scheduler_config: Optional[SchedulerConfig] = None) -> nn.Module:
"""Initialize a model with the given configurations."""
model_class, _ = get_model_architecture(model_config)
return build_model(
model_class,
model_config.hf_config,
cache_config=cache_config,
quant_config=_get_quantization_config(model_config, load_config),
lora_config=lora_config,
multimodal_config=model_config.multimodal_config,
scheduler_config=scheduler_config,
)
class BaseModelLoader(ABC):
"""Base class for model loaders."""
def __init__(self, load_config: LoadConfig):
self.load_config = load_config
@abstractmethod
def download_model(self, model_config: ModelConfig) -> None:
"""Download a model so that it can be immediately loaded."""
raise NotImplementedError
@abstractmethod
def load_model(self, *, model_config: ModelConfig,
device_config: DeviceConfig,
lora_config: Optional[LoRAConfig],
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
cache_config: CacheConfig) -> nn.Module:
"""Load a model with the given configurations."""
raise NotImplementedError
class DefaultModelLoader(BaseModelLoader):
"""Model loader that can load different file types from disk."""
def __init__(self, load_config: LoadConfig):
super().__init__(load_config)
if load_config.model_loader_extra_config:
raise ValueError(f"Model loader extra config is not supported for "
f"load format {load_config.load_format}")
def _maybe_download_from_modelscope(
self, model: str, revision: Optional[str]) -> Optional[str]:
"""Download model from ModelScope hub if VLLM_USE_MODELSCOPE is True.
Returns the path to the downloaded model, or None if the model is not
downloaded from ModelScope."""
if VLLM_USE_MODELSCOPE:
# download model from ModelScope hub,
# lazy import so that modelscope is not required for normal use.
# pylint: disable=C.
from modelscope.hub.snapshot_download import snapshot_download
if not os.path.exists(model):
model_path = snapshot_download(
model_id=model,
cache_dir=self.load_config.download_dir,
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
revision=revision,
ignore_file_pattern=self.load_config.ignore_patterns,
)
else:
model_path = model
return model_path
return None
def _prepare_weights(self, model_name_or_path: str,
revision: Optional[str],
fall_back_to_pt: bool) -> Tuple[str, List[str], bool]:
"""Prepare weights for the model.
If the model is not local, it will be downloaded."""
model_name_or_path = self._maybe_download_from_modelscope(
model_name_or_path, revision) or model_name_or_path
is_local = os.path.isdir(model_name_or_path)
load_format = self.load_config.load_format
use_safetensors = False
index_file = SAFE_WEIGHTS_INDEX_NAME
# Some quantized models use .pt files for storing the weights.
if load_format == LoadFormat.AUTO:
allow_patterns = ["*.safetensors", "*.bin"]
elif load_format == LoadFormat.SAFETENSORS:
use_safetensors = True
allow_patterns = ["*.safetensors"]
elif load_format == LoadFormat.MISTRAL:
use_safetensors = True
allow_patterns = ["consolidated*.safetensors"]
index_file = "consolidated.safetensors.index.json"
elif load_format == LoadFormat.PT:
allow_patterns = ["*.pt"]
elif load_format == LoadFormat.NPCACHE:
allow_patterns = ["*.bin"]
else:
raise ValueError(f"Unknown load_format: {load_format}")
if fall_back_to_pt:
allow_patterns += ["*.pt"]
if not is_local:
hf_folder = download_weights_from_hf(
model_name_or_path,
self.load_config.download_dir,
allow_patterns,
revision,
ignore_patterns=self.load_config.ignore_patterns,
)
else:
hf_folder = model_name_or_path
hf_weights_files: List[str] = []
for pattern in allow_patterns:
hf_weights_files += glob.glob(os.path.join(hf_folder, pattern))
if len(hf_weights_files) > 0:
if pattern == "*.safetensors":
use_safetensors = True
break
if use_safetensors:
# For models like Mistral-7B-Instruct-v0.3
# there are both sharded safetensors files and a consolidated
# safetensors file. Using both breaks.
# Here, we download the `model.safetensors.index.json` and filter
# any files not found in the index.
if not is_local:
download_safetensors_index_file_from_hf(
model_name_or_path, index_file,
self.load_config.download_dir, revision)
hf_weights_files = filter_duplicate_safetensors_files(
hf_weights_files, hf_folder, index_file)
else:
hf_weights_files = filter_files_not_needed_for_inference(
hf_weights_files)
if len(hf_weights_files) == 0:
raise RuntimeError(
f"Cannot find any model weights with `{model_name_or_path}`")
return hf_folder, hf_weights_files, use_safetensors
def _get_weights_iterator(
self, model_name_or_path: str, revision: Optional[str],
fall_back_to_pt: bool
) -> Generator[Tuple[str, torch.Tensor], None, None]:
"""Get an iterator for the model weights based on the load format."""
hf_folder, hf_weights_files, use_safetensors = self._prepare_weights(
model_name_or_path, revision, fall_back_to_pt)
if self.load_config.load_format == LoadFormat.NPCACHE:
# Currently np_cache only support *.bin checkpoints
assert use_safetensors is False
weights_iterator = np_cache_weights_iterator(
model_name_or_path, self.load_config.download_dir, hf_folder,
hf_weights_files)
elif use_safetensors:
weights_iterator = safetensors_weights_iterator(hf_weights_files)
else:
weights_iterator = pt_weights_iterator(hf_weights_files)
if current_platform.is_tpu():
# In PyTorch XLA, we should call `xm.mark_step` frequently so that
# not too many ops are accumulated in the XLA program.
import torch_xla.core.xla_model as xm
def _xla_weights_iterator(iterator: Generator):
for weights in iterator:
yield weights
xm.mark_step()
weights_iterator = _xla_weights_iterator(weights_iterator)
return weights_iterator
def download_model(self, model_config: ModelConfig) -> None:
self._prepare_weights(model_config.model,
model_config.revision,
fall_back_to_pt=True)
def load_model(self, *, model_config: ModelConfig,
device_config: DeviceConfig,
lora_config: Optional[LoRAConfig],
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
cache_config: CacheConfig) -> nn.Module:
target_device = torch.device(device_config.device)
with set_default_torch_dtype(model_config.dtype):
with target_device:
model = _initialize_model(model_config, self.load_config,
lora_config, cache_config,
scheduler_config)
model.load_weights(
self._get_weights_iterator(model_config.model,
model_config.revision,
fall_back_to_pt=getattr(
model,
"fall_back_to_pt_during_load",
True)), )
for _, module in model.named_modules():
quant_method = getattr(module, "quant_method", None)
if quant_method is not None:
# When quant methods need to process weights after loading
# (for repacking, quantizing, etc), they expect parameters
# to be on the global target device. This scope is for the
# case where cpu offloading is used, where we will move the
# parameters onto device for processing and back off after.
with device_loading_context(module, target_device):
quant_method.process_weights_after_loading(module)
return model.eval()
class DummyModelLoader(BaseModelLoader):
"""Model loader that will set model weights to random values."""
def __init__(self, load_config: LoadConfig):
super().__init__(load_config)
if load_config.model_loader_extra_config:
raise ValueError(f"Model loader extra config is not supported for "
f"load format {load_config.load_format}")
def download_model(self, model_config: ModelConfig) -> None:
pass # Nothing to download
def load_model(self, *, model_config: ModelConfig,
device_config: DeviceConfig,
lora_config: Optional[LoRAConfig],
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
cache_config: CacheConfig) -> nn.Module:
with set_default_torch_dtype(model_config.dtype):
with torch.device(device_config.device):
model = _initialize_model(model_config, self.load_config,
lora_config, cache_config,
scheduler_config)
# NOTE(woosuk): For accurate performance evaluation, we assign
# random values to the weights.
initialize_dummy_weights(model)
return model.eval()
class TensorizerLoader(BaseModelLoader):
"""Model loader using CoreWeave's tensorizer library."""
def __init__(self, load_config: LoadConfig):
super().__init__(load_config)
if isinstance(load_config.model_loader_extra_config, TensorizerConfig):
self.tensorizer_config = load_config.model_loader_extra_config
else:
self.tensorizer_config = TensorizerConfig(
**load_config.model_loader_extra_config)
def _verify_config(self, model_config: ModelConfig,
parallel_config: ParallelConfig):
self.tensorizer_config.verify_with_model_config(model_config)
self.tensorizer_config.verify_with_parallel_config(parallel_config)
def _get_weights_iterator(
self) -> Generator[Tuple[str, torch.Tensor], None, None]:
tensorizer_args = self.tensorizer_config._construct_tensorizer_args()
return tensorizer_weights_iterator(tensorizer_args)
def _load_model_serialized_cpu(
self,
model_config: ModelConfig,
device_config: DeviceConfig,
lora_config: Optional[LoRAConfig],
cache_config: CacheConfig,
) -> nn.Module:
"""Load a serialized model with tensorizer to the CPU.
This is only necessary when the model isn't vLLM-tensorized (see
examples/tensorize_vllm_model.py) This should still be faster than
default HuggingFace loading, but will be slower than loading a
vLLM-tensorized model.
"""
with set_default_torch_dtype(model_config.dtype):
with torch.device(device_config.device):
model = _initialize_model(model_config, self.load_config,
lora_config, cache_config)
model.load_weights(self._get_weights_iterator())
return model.eval()
def _load_model_serialized(
self,
model_config: ModelConfig,
device_config: DeviceConfig,
lora_config: Optional[LoRAConfig],
cache_config: CacheConfig,
) -> nn.Module:
"""Load a serialized model with tensorizer.
Expects a vLLM-tensorized model. See the
examples/tensorize_vllm_model.py example script
for serializing vLLM models."""
with set_default_torch_dtype(model_config.dtype):
with torch.device(device_config.device):
model_class = get_model_architecture(model_config)[0]
quant_config = _get_quantization_config(
model_config, self.load_config)
extra_kwargs = _get_model_initialization_kwargs(
model_class, lora_config, model_config.multimodal_config)
extra_kwargs["quant_config"] = quant_config
extra_kwargs["cache_config"] = cache_config
tensorizer_config = copy.copy(self.tensorizer_config)
tensorizer_config.model_class = model_class
tensorizer_config.hf_config = model_config.hf_config
tensorizer_config.dtype = model_config.dtype
model = load_with_tensorizer(tensorizer_config, **extra_kwargs)
return model.eval()
def download_model(self, model_config: ModelConfig) -> None:
self.tensorizer_config.verify_with_model_config(model_config)
with self.tensorizer_config.open_stream():
pass
def load_model(self, *, model_config: ModelConfig,
device_config: DeviceConfig,
lora_config: Optional[LoRAConfig],
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
cache_config: CacheConfig) -> nn.Module:
self._verify_config(model_config, parallel_config)
if parallel_config.tensor_parallel_size > 1:
from vllm.distributed import get_tensor_model_parallel_rank
self.tensorizer_config.tensorizer_uri = \
self.tensorizer_config.tensorizer_uri \
% get_tensor_model_parallel_rank()
if is_vllm_tensorized(self.tensorizer_config):
return self._load_model_serialized(model_config, device_config,
lora_config, cache_config)
return self._load_model_serialized_cpu(model_config, device_config,
lora_config, cache_config)
@staticmethod
def save_model(
model: torch.nn.Module,
tensorizer_config: TensorizerConfig,
) -> None:
serialize_vllm_model(
model=model,
tensorizer_config=tensorizer_config,
)
class ShardedStateLoader(BaseModelLoader):
"""
Model loader that directly loads each worker's model state dict, which
enables a fast load path for large tensor-parallel models where each worker
only needs to read its own shard rather than the entire checkpoint. See
`examples/save_sharded_state.py` for creating a sharded checkpoint.
"""
DEFAULT_PATTERN = "model-rank-{rank}-part-{part}.safetensors"
def __init__(self, load_config: LoadConfig):
super().__init__(load_config)
extra_config = ({} if load_config.model_loader_extra_config is None
else load_config.model_loader_extra_config.copy())
self.pattern = extra_config.pop("pattern", self.DEFAULT_PATTERN)
if extra_config:
raise ValueError(f"Unexpected extra config keys for load format "
f"{load_config.load_format}: "
f"{load_config.model_loader_extra_config.keys()}")
@staticmethod
def _filter_subtensors(
tensors: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""
Filter out all tensors that share the same memory or a subset of the
memory of another tensor.
"""
same_storage_groups: Dict[Any, List[Tuple[
str, torch.Tensor]]] = collections.defaultdict(list)
for key, tensor in tensors.items():
if tensor.numel():
ptr = tensor.untyped_storage().data_ptr()
same_storage_groups[tensor.device, ptr].append((key, tensor))
def get_end_ptr(tensor: torch.Tensor) -> int:
return tensor.view(-1)[-1].data_ptr() + tensor.element_size()
result: Dict[str, torch.Tensor] = {}
for group in same_storage_groups.values():
for k, t in group:
a, b = t.data_ptr(), get_end_ptr(t)
for k2, t2 in group:
if not t2.is_contiguous():
continue
a2, b2 = t2.data_ptr(), get_end_ptr(t2)
if a < a2 or b2 < b:
continue
if a2 < a or b < b2 or not t.is_contiguous():
break # t2 covers strictly more memory than t.
if k2 < k:
# Same tensors, keep the one with the smaller key.
break
else:
result[k] = t
return result
def _prepare_weights(self, model_name_or_path: str,
revision: Optional[str]):
if os.path.isdir(model_name_or_path):
return model_name_or_path
else:
allow_patterns = ["*.safetensors"]
return download_weights_from_hf(
model_name_or_path,
self.load_config.download_dir,
allow_patterns,
revision,
ignore_patterns=self.load_config.ignore_patterns,
)
def download_model(self, model_config: ModelConfig) -> None:
self._prepare_weights(model_config.model, model_config.revision)
def load_model(self, *, model_config: ModelConfig,
device_config: DeviceConfig,
lora_config: Optional[LoRAConfig],
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
cache_config: CacheConfig) -> nn.Module:
from safetensors.torch import safe_open
from vllm.distributed import get_tensor_model_parallel_rank
local_model_path = self._prepare_weights(model_config.model,
model_config.revision)
with set_default_torch_dtype(model_config.dtype):
with torch.device(device_config.device):
model = _initialize_model(model_config, self.load_config,
lora_config, cache_config)
for _, module in model.named_modules():
quant_method = getattr(module, "quant_method", None)
if quant_method is not None:
quant_method.process_weights_after_loading(module)
rank = get_tensor_model_parallel_rank()
pattern = os.path.join(
local_model_path,
self.pattern.format(rank=rank, part="*"),
)
filepaths = glob.glob(pattern)
if not filepaths:
# TODO: support un-sharded checkpoints too
raise ValueError(
f"Could not find checkpoint files '{pattern}', only "
f"pre-sharded checkpoints are currently supported!")
state_dict = self._filter_subtensors(model.state_dict())
for path in filepaths:
with safe_open(path, framework="pt") as f:
for key in f.keys(): # noqa: SIM118
tensor = f.get_tensor(key)
# If loading with LoRA enabled, additional padding may
# be added to certain parameters. We only load into a
# narrowed view of the parameter data.
param_data = state_dict[key].data
param_shape = state_dict[key].shape
for dim, size in enumerate(tensor.shape):
if size < param_shape[dim]:
param_data = param_data.narrow(dim, 0, size)
if tensor.shape != param_shape:
logger.warning(
"loading tensor of shape %s into "
"parameter '%s' of shape %s", tensor.shape,
key, param_shape)
param_data.copy_(tensor)
state_dict.pop(key)
if state_dict:
raise ValueError(
f"Missing keys {tuple(state_dict)} in loaded state!")
return model.eval()
@staticmethod
def save_model(
model: torch.nn.Module,
path: str,
pattern: Optional[str] = None,
max_size: Optional[int] = None,
) -> None:
from safetensors.torch import save_file
from vllm.distributed import get_tensor_model_parallel_rank
if pattern is None:
pattern = ShardedStateLoader.DEFAULT_PATTERN
rank = get_tensor_model_parallel_rank()
part_idx = 0
total_size = 0
state_dict = ShardedStateLoader._filter_subtensors(model.state_dict())
state_dict_part: Dict[str, torch.Tensor] = {}
for key, tensor in state_dict.items():
param_size = tensor.nelement() * tensor.element_size()
if max_size is not None and total_size + param_size > max_size:
filename = pattern.format(rank=rank, part=part_idx)
save_file(
state_dict_part,
os.path.join(path, filename),
)
part_idx += 1
total_size = 0
state_dict_part = {}
state_dict_part[key] = tensor
total_size += param_size
if len(state_dict_part) > 0:
filename = pattern.format(rank=rank, part=part_idx)
save_file(
state_dict_part,
os.path.join(path, filename),
)
class BitsAndBytesModelLoader(BaseModelLoader):
"""Model loader to load model weights with BitAndBytes quantization."""
default_target_modules = [
"gate_proj", "down_proj", "up_proj", "q_proj", "k_proj", "v_proj",
"o_proj"
]
possible_config_file_names = ["adapter_config.json"]
def __init__(self, load_config: LoadConfig):
super().__init__(load_config)
# we don't need to quantize the whole model, only the target modules
# that are specified in the adapter config file. If the adapter config
# file is not provided, we will quantize the default modules.
if (not load_config.model_loader_extra_config
or "qlora_adapter_name_or_path"
not in load_config.model_loader_extra_config):
self.target_modules = self.default_target_modules
return
qlora_adapter = load_config.model_loader_extra_config[
"qlora_adapter_name_or_path"]
config_file_path = self._get_config_file(qlora_adapter)
with open(config_file_path, "r") as f:
config = json.load(f)
self.target_modules = config["target_modules"]
def _get_config_file(self, qlora_adapter: str) -> str:
is_local = os.path.isdir(qlora_adapter)
config_file_path = None
if is_local:
for file in self.possible_config_file_names:
config_file_path = os.path.join(qlora_adapter, file)
if os.path.exists(config_file_path):
break
else:
hf_api = HfApi()
repo_files = hf_api.list_repo_files(repo_id=qlora_adapter)
for file in self.possible_config_file_names:
if file in repo_files:
config_file_path = hf_hub_download(repo_id=qlora_adapter,
filename=file)
break
if not config_file_path:
raise ValueError(
f"Cannot find adapter config file in {qlora_adapter}")
return config_file_path
def _get_weight_files(
self,
model_name_or_path: str,
allowed_patterns: List[str],
revision: Optional[str] = None) -> Tuple[List[str], str]:
"""Retrieve weight files. Download the files if necessary.
Return the weight files and the file pattern."""
is_local = os.path.isdir(model_name_or_path)
if is_local:
for pattern in allowed_patterns:
weight_files = glob.glob(
os.path.join(model_name_or_path, pattern))
if weight_files:
return weight_files, pattern
else:
hf_api = HfApi()
repo_files = hf_api.list_repo_files(repo_id=model_name_or_path)
for pattern in allowed_patterns:
matching_files = fnmatch.filter(repo_files, pattern)
if matching_files:
hf_folder = download_weights_from_hf(
model_name_or_path,
self.load_config.download_dir,
[pattern],
revision,
ignore_patterns=self.load_config.ignore_patterns,
)
return glob.glob(os.path.join(hf_folder, pattern)), pattern
raise RuntimeError(
f"No model weights found in: `{model_name_or_path}`")
def _prepare_weights(self, model_name_or_path: str,
revision: Optional[str]) -> Tuple[List[str], bool]:
"""Prepare weight files for the model."""
allowed_patterns = ["*.safetensors", "*.bin", "*.pt"]
hf_weights_files, matched_pattern = self._get_weight_files(
model_name_or_path, allowed_patterns, revision)
if matched_pattern != "*.safetensors":
hf_weights_files = filter_files_not_needed_for_inference(
hf_weights_files)
if len(hf_weights_files) == 0:
raise RuntimeError(
f"Cannot find any model weights with `{model_name_or_path}`")
return hf_weights_files, matched_pattern == "*.safetensors"
def _hf_weight_iter(self, hf_weights_files, use_safetensors: bool):
if use_safetensors:
return safetensors_weights_iterator(hf_weights_files)
else:
return pt_weights_iterator(hf_weights_files)
def _get_quantized_weights_iterator(
self,
model_name_or_path: str,
revision: Optional[str],
pre_quant: bool,
load_8bit: bool,
) -> Tuple[Generator[Tuple[str, torch.Tensor], None, None], Dict[str,
Any]]:
"""Get an iterator to the model weights with bitsandbytes quantization,
as well as the quantization state dictionary."""
# only load the bitsandbytes module when needed
try:
import bitsandbytes
if bitsandbytes.__version__ < "0.42.0":
raise ImportError("bitsandbytes version is wrong. Please "
"install bitsandbytes>=0.42.0.")
except ImportError as err:
raise ImportError("Please install bitsandbytes>=0.42.0 via "
"`pip install bitsandbytes>=0.42.0` to use "
"bitsandbytes quantizer.") from err
hf_weights_files, use_safetensors = self._prepare_weights(
model_name_or_path, revision)
quant_state_dict: Dict[str, Any] = {}
if pre_quant:
if load_8bit:
return self._quantized_8bit_generator(
hf_weights_files, use_safetensors,
quant_state_dict), quant_state_dict
else:
return self._quantized_4bit_generator(
hf_weights_files, use_safetensors,
quant_state_dict), quant_state_dict
return self._unquantized_generator(hf_weights_files, use_safetensors,
quant_state_dict), quant_state_dict
def _quantized_8bit_generator(self, hf_weights_files, use_safetensors,
quant_state_dict) -> Generator:
for weight_name, weight_tensor in self._hf_weight_iter(
hf_weights_files, use_safetensors):
if not weight_name.lower().endswith(".scb"):
continue
weight_key = weight_name.lower().replace(".scb", ".qweight")
quant_state_dict[weight_key] = weight_tensor
for weight_name, weight_tensor in self._hf_weight_iter(
hf_weights_files, use_safetensors):
if not weight_name.endswith(".weight"):
continue
qweight_name = weight_name.replace(".weight", ".qweight")
if qweight_name in quant_state_dict:
set_weight_attrs(weight_tensor, {"load_in_8bit": True})
yield qweight_name, weight_tensor
else:
yield weight_name, weight_tensor
def _quantized_4bit_generator(self, hf_weights_files, use_safetensors,
quant_state_dict) -> Generator:
from bitsandbytes.functional import QuantState
# First iterate over all quant state weights
weight_iterator = self._hf_weight_iter(hf_weights_files,
use_safetensors)
temp_state_dict = {}
for weight_name, weight_tensor in weight_iterator:
if weight_name.endswith(".weight"):
continue
# bitsandbytes library requires
# weight.quant_state.bitsandbytes__* in CPU
if "quant_state.bitsandbytes" in weight_name:
temp_state_dict[weight_name] = weight_tensor.cpu().data
else:
temp_state_dict[weight_name] = weight_tensor
# Closure to parse quant_state for each prequant weight
def _parse_quant_state(param_name: str,
temp_state_dict: Dict) -> QuantState:
quant_state = {}
for k in temp_state_dict:
if param_name + "." in k:
quant_state[k] = temp_state_dict[k]
return QuantState.from_dict(quant_state, device="cuda")
# Second iterate over all prequant and normal weights
# pre quantized weights would have a quant_state
for weight_name, weight_tensor in self._hf_weight_iter(
hf_weights_files, use_safetensors):
# Filter out all weights whose suffix is not ".weight"
if not weight_name.endswith(".weight"):
continue
if (f"{weight_name}.quant_state.bitsandbytes__nf4" \
in temp_state_dict) or \
(f"{weight_name}.quant_state.bitsandbytes__fp4" \
in temp_state_dict):
quant_state = _parse_quant_state(weight_name, temp_state_dict)
weight_name = weight_name.replace(".weight", ".qweight")
quant_state_dict[weight_name] = quant_state
yield weight_name.replace(".weight", ".qweight"), weight_tensor
else:
yield weight_name, weight_tensor
def _unquantized_generator(self, hf_weights_files, use_safetensors,
quant_state_dict) -> Generator:
from bitsandbytes.functional import quantize_4bit
for weight_name, weight_tensor in self._hf_weight_iter(
hf_weights_files, use_safetensors):
if any(target_module in weight_name
for target_module in self.target_modules):
weight_name = weight_name.replace(".weight", ".qweight")
# bitsandbytes requires data in GPU
loaded_weight = weight_tensor.cuda().data
with set_default_torch_dtype(torch.float32):
processed_weight, quant_state = quantize_4bit(
loaded_weight,
compress_statistics=True,
quant_type="nf4")
quant_state_dict[weight_name] = quant_state
else:
processed_weight = weight_tensor
yield weight_name, processed_weight
def _load_weights(self, model_config: ModelConfig,
model: nn.Module) -> None:
if not hasattr(model, 'load_weights'):
raise AttributeError(
"The required method 'load_weights' is not defined in class"
f" {type(model).__name__}.")
if not hasattr(model, 'bitsandbytes_stacked_params_mapping'):
raise AttributeError(
f"Model {type(model).__name__} does not support BitsAndBytes "
"quantization yet.")
logger.info("Loading weights with BitsAndBytes quantization. "
" May take a while ...")
quant_config = getattr(model_config.hf_config, "quantization_config",
None)
pre_quant = False
if quant_config is not None:
quant_method = quant_config.get('quant_method')
if quant_method == "bitsandbytes":
pre_quant = True
else:
raise ValueError(
f"BitsAndBytes loader does not support {quant_method} "
"quantization")
load_8bit = False
if pre_quant:
load_8bit = quant_config.get('load_in_8bit', False)
qweight_iterator, quant_state_dict = \
self._get_quantized_weights_iterator(
model_config.model, model_config.revision, pre_quant, load_8bit)
model.load_weights(qweight_iterator)
torch.cuda.empty_cache()
param_dict = dict(model.named_parameters())
stacked_quant_state_dict: Dict[str, Dict[int, Any]] = {}
for quant_param_name in quant_state_dict:
non_stacked_param_name = quant_param_name
shard_index = 0
for shard_name, (
weight_name, index
) in model.bitsandbytes_stacked_params_mapping.items():
if shard_name in quant_param_name:
shard_index = index
quant_param_name = quant_param_name.replace(
shard_name, weight_name)
break
if quant_param_name not in param_dict:
raise ValueError(
f"Parameter {quant_param_name} not found in the model.")
if quant_param_name not in stacked_quant_state_dict:
stacked_quant_state_dict[quant_param_name] = {}
stacked_quant_state_dict[quant_param_name][shard_index] = (
quant_state_dict[non_stacked_param_name])
# save quant_states and offsets as the attributes of the parameters
for param_name, param in param_dict.items():
if param_name in stacked_quant_state_dict:
quant_states = stacked_quant_state_dict[param_name]
set_weight_attrs(param, {"bnb_quant_state": quant_states})
pack_ratio = getattr(param, "pack_factor", -1)
if pack_ratio == -1:
raise ValueError(
f"pack_factor not set for parameter {param_name}.")
num_elements = [0] * len(quant_states)
for seq, quant_state in quant_states.items():
num_elements[seq] = math.prod(
quant_state.shape) // pack_ratio
offsets = np.concatenate(([0], np.cumsum(num_elements)))
set_weight_attrs(param, {"bnb_shard_offsets": offsets})
if load_8bit:
set_weight_attrs(
param, {"matmul_state": [None] * len(quant_states)})
def download_model(self, model_config: ModelConfig) -> None:
self._prepare_weights(model_config.model, model_config.revision)
def load_model(self, *, model_config: ModelConfig,
device_config: DeviceConfig,
lora_config: Optional[LoRAConfig],
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
cache_config: CacheConfig) -> nn.Module:
with set_default_torch_dtype(model_config.dtype):
with torch.device(device_config.device):
model = _initialize_model(model_config, self.load_config,
lora_config, cache_config)
self._load_weights(model_config, model)
return model.eval()
class GGUFModelLoader(BaseModelLoader):
"""
Model loader that can load GGUF files. This is useful for loading models
that are quantized with GGUF and saved in the GGUF format. This loader
supports loading both full models and sharded models.
"""
def __init__(self, load_config: LoadConfig):
super().__init__(load_config)
if load_config.model_loader_extra_config:
raise ValueError(f"Model loader extra config is not supported for "
f"load format {load_config.load_format}")
def _prepare_weights(self, model_name_or_path: str):
if os.path.isfile(model_name_or_path):
return model_name_or_path
else:
raise ValueError(f"{model_name_or_path} is not a file.")
def _get_gguf_weights_map(self, model_config: ModelConfig):
"""
GGUF uses this naming convention for their tensors from HF checkpoint:
`blk.N.BB.weight` and `blk.N.BB.bias`
where N signifies the block number of a layer, and BB signifies the
attention/mlp layer components.
See "Standardized tensor names" in
https://github.com/ggerganov/ggml/blob/master/docs/gguf.md for details.
"""
config = model_config.hf_config
model_type = config.model_type
# hack: ggufs have a different name than transformers
if model_type == "cohere":
model_type = "command-r"
arch = None
for key, value in gguf.MODEL_ARCH_NAMES.items():
if value == model_type:
arch = key
break
if arch is None:
raise RuntimeError(f"Unknown gguf model_type: {model_type}")
num_layers = config.num_hidden_layers
name_map = gguf.get_tensor_name_map(arch, num_layers)
with torch.device("meta"):
dummy_model = AutoModelForCausalLM.from_config(config)
state_dict = dummy_model.state_dict()
gguf_to_hf_name_map = {}
for hf_name in state_dict:
name, suffix = hf_name.rsplit(".", 1)
gguf_name = name_map.get_name(name)
gguf_to_hf_name_map[f"{gguf_name}.{suffix}"] = hf_name
return gguf_to_hf_name_map
def _get_weights_iterator(
self, model_name_or_path: str, gguf_to_hf_name_map: Dict[str, str]
) -> Generator[Tuple[str, torch.Tensor], None, None]:
return gguf_quant_weights_iterator(model_name_or_path,
gguf_to_hf_name_map)
def download_model(self, model_config: ModelConfig) -> None:
self._prepare_weights(model_config.model)
def load_model(self, *, model_config: ModelConfig,
device_config: DeviceConfig,
lora_config: Optional[LoRAConfig],
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
cache_config: CacheConfig) -> nn.Module:
local_model_path = self._prepare_weights(model_config.model)
gguf_weights_map = self._get_gguf_weights_map(model_config)
# we can only know if tie word embeddings after mapping weights
if "lm_head.weight" in get_gguf_extra_tensor_names(
local_model_path, gguf_weights_map):
model_config.hf_config.update({"tie_word_embeddings": True})
with set_default_torch_dtype(model_config.dtype):
with torch.device(device_config.device):
model = _initialize_model(model_config, self.load_config,
lora_config, cache_config)
model.load_weights(
self._get_weights_iterator(local_model_path, gguf_weights_map))
return model
def get_model_loader(load_config: LoadConfig) -> BaseModelLoader:
"""Get a model loader based on the load format."""
if isinstance(load_config.load_format, type):
return load_config.load_format(load_config)
if load_config.load_format == LoadFormat.DUMMY:
return DummyModelLoader(load_config)
if load_config.load_format == LoadFormat.TENSORIZER:
return TensorizerLoader(load_config)
if load_config.load_format == LoadFormat.SHARDED_STATE:
return ShardedStateLoader(load_config)
if load_config.load_format == LoadFormat.BITSANDBYTES:
return BitsAndBytesModelLoader(load_config)
if load_config.load_format == LoadFormat.GGUF:
return GGUFModelLoader(load_config)
return DefaultModelLoader(load_config)