vllm/tests/core/test_scheduler.py
Vincent a4f1ee35d6
Deprecate best_of Sampling Parameter in anticipation for vLLM V1 (#13997)
Signed-off-by: vincent-4 <vincentzhongy+githubvincent4@gmail.com>
Signed-off-by: Brayden Zhong <b8zhong@uwaterloo.ca>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Brayden Zhong <b8zhong@uwaterloo.ca>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-05 20:22:43 +00:00

971 lines
38 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import time
from collections import deque
from unittest.mock import MagicMock
import pytest # noqa
from torch import Use # noqa
from vllm.config import CacheConfig, LoRAConfig, SchedulerConfig
from vllm.core.interfaces import AllocStatus
from vllm.core.scheduler import Scheduler, SchedulingBudget
from vllm.lora.request import LoRARequest
from vllm.sequence import SequenceGroup
from .utils import (append_new_token, append_new_token_seq,
append_new_token_seq_group, create_dummy_prompt,
get_sequence_groups, schedule_and_update_computed_tokens)
def test_scheduler_add_seq_group():
block_size = 4
scheduler_config = SchedulerConfig(
"generate",
max_num_batched_tokens=100,
max_num_seqs=64,
max_model_len=1,
)
cache_config = CacheConfig(block_size, 1.0, 1, cache_dtype="auto")
cache_config.num_cpu_blocks = 4
cache_config.num_gpu_blocks = 4
scheduler = Scheduler(scheduler_config, cache_config, None)
# Add seq group to scheduler.
num_seq_group = 4
for i in range(num_seq_group):
_, seq_group = create_dummy_prompt(str(i),
block_size,
block_size=block_size)
scheduler.add_seq_group(seq_group)
assert scheduler.get_num_unfinished_seq_groups() == i + 1
def test_scheduler_abort_seq_group():
block_size = 4
scheduler_config = SchedulerConfig(
"generate",
max_num_batched_tokens=100,
max_num_seqs=64,
max_model_len=1,
)
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
cache_config.num_cpu_blocks = 4
cache_config.num_gpu_blocks = 4
scheduler = Scheduler(scheduler_config, cache_config, None)
# Add multiple seq groups to scheduler.
num_seq_group = 4
request_ids: set[str] = set()
for i in range(num_seq_group):
_, seq_group = create_dummy_prompt(str(i), block_size)
scheduler.add_seq_group(seq_group)
request_ids.add(str(i))
# Abort all added seq groups.
assert scheduler.get_num_unfinished_seq_groups() == num_seq_group
scheduler.abort_seq_group(request_ids)
assert scheduler.get_num_unfinished_seq_groups() == 0
def test_scheduler_schedule_simple():
block_size = 4
num_seq_group = 4
max_model_len = 16
scheduler_config = SchedulerConfig(
"generate",
max_num_batched_tokens=64,
max_num_seqs=num_seq_group,
max_model_len=max_model_len,
)
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
cache_config.num_cpu_blocks = 8
cache_config.num_gpu_blocks = 8
scheduler = Scheduler(scheduler_config, cache_config, None)
running: list[SequenceGroup] = []
# Add seq groups to scheduler.
for i in range(num_seq_group):
_, seq_group = create_dummy_prompt(str(i),
prompt_length=block_size,
block_size=block_size)
scheduler.add_seq_group(seq_group)
running.append(seq_group)
# Schedule seq groups prompts.
num_tokens = block_size * num_seq_group
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert set(get_sequence_groups(out)) == set(running)
assert out.num_batched_tokens == num_tokens
assert (not out.blocks_to_copy and not out.blocks_to_swap_in
and not out.blocks_to_swap_out)
assert len(seq_group_meta) == num_seq_group
append_new_token(out, 1)
# Schedule seq groups generation.
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert set(get_sequence_groups(out)) == set(running)
assert out.num_batched_tokens == num_seq_group
assert (not out.blocks_to_copy and not out.blocks_to_swap_in
and not out.blocks_to_swap_out)
assert len(seq_group_meta) == num_seq_group
append_new_token(out, 1)
def test_scheduler_prefill_prioritized():
"""Verify running batched tokens are not applied to prefill requests."""
block_size = 4
max_model_len = 30
max_batched_num_tokens = 30
scheduler_config = SchedulerConfig(
"generate",
max_num_batched_tokens=max_batched_num_tokens,
max_num_seqs=2,
max_model_len=max_model_len,
)
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
cache_config.num_cpu_blocks = 16
cache_config.num_gpu_blocks = 16
scheduler = Scheduler(scheduler_config, cache_config, None)
# Add seq groups to scheduler.
_, seq_group_a = create_dummy_prompt("1", 1, block_size=block_size)
scheduler.add_seq_group(seq_group_a)
# Schedule seq groups prompts.
_, out = schedule_and_update_computed_tokens(scheduler)
assert get_sequence_groups(out) == [seq_group_a]
# Add a new prefill request B.
_, seq_group_b = create_dummy_prompt("2", 30, block_size=block_size)
scheduler.add_seq_group(seq_group_b)
# Verify prefill requests are prioritized. Since max_batched_num_tokens
# is 1, new prefill request has to be scheduled first.
_, out = schedule_and_update_computed_tokens(scheduler)
assert get_sequence_groups(out) == [seq_group_b]
def test_scheduler_schedule_preempt_abort():
block_size = 4
max_model_len = 16
scheduler_config = SchedulerConfig(
"generate",
max_num_batched_tokens=64,
max_num_seqs=2,
max_model_len=max_model_len,
)
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
cache_config.num_cpu_blocks = 2
cache_config.num_gpu_blocks = 2
scheduler = Scheduler(scheduler_config, cache_config, None)
# Add seq groups to scheduler.
seq_a, seq_group_a = create_dummy_prompt("1",
block_size,
block_size=block_size)
seq_b, seq_group_b = create_dummy_prompt("2",
block_size,
block_size=block_size)
scheduler.add_seq_group(seq_group_a)
scheduler.add_seq_group(seq_group_b)
# Schedule seq groups prompts.
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert get_sequence_groups(out) == [seq_group_a, seq_group_b]
assert out.num_batched_tokens == block_size * 2 # seq_a and seq_b
assert (not out.blocks_to_copy and not out.blocks_to_swap_in
and not out.blocks_to_swap_out)
assert len(seq_group_meta) == 2
assert scheduler.get_num_unfinished_seq_groups() == 2
# Append "generated" tokens, allowing the sequence to mark prompt tokens as
# processed.
append_new_token(out, 1)
# Schedule seq groups generation and preempt seq group b.
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert get_sequence_groups(out) == [seq_group_a]
assert out.num_batched_tokens == 1
assert (not out.blocks_to_copy and not out.blocks_to_swap_in
and not out.blocks_to_swap_out)
assert len(seq_group_meta) == 1
assert scheduler.get_num_unfinished_seq_groups() == 2
assert out.preempted == 1
# Abort seq group a. Re-schedule seq group b prompt with recomputation.
scheduler.abort_seq_group("1")
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert get_sequence_groups(out) == [seq_group_b]
assert out.num_batched_tokens == 5 # 4 prompt + 1 generation.
assert (not out.blocks_to_copy and not out.blocks_to_swap_in
and not out.blocks_to_swap_out)
assert len(seq_group_meta) == 1
assert scheduler.get_num_unfinished_seq_groups() == 1
def test_scheduler_max_seqs():
block_size = 4
num_seq_group = 4
max_seq_group = 2
max_model_len = 16
scheduler_config = SchedulerConfig(
"generate",
max_num_batched_tokens=64,
max_num_seqs=max_seq_group,
max_model_len=max_model_len,
)
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
cache_config.num_cpu_blocks = 8
cache_config.num_gpu_blocks = 8
scheduler = Scheduler(scheduler_config, cache_config, None)
all_seq_groups: list[SequenceGroup] = []
# Add seq groups to scheduler.
for i in range(num_seq_group):
_, seq_group = create_dummy_prompt(str(i),
prompt_length=block_size,
block_size=block_size)
all_seq_groups.append(seq_group)
# Append 1 seq group
scheduler.add_seq_group(all_seq_groups[0])
# Schedule seq groups prompts.
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert set(get_sequence_groups(out)) == set([all_seq_groups[0]])
append_new_token(out, 1)
# Schedule seq groups generation.
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert set(get_sequence_groups(out)) == set([all_seq_groups[0]])
append_new_token(out, 1)
# Append 2 more seq group
scheduler.add_seq_group(all_seq_groups[1])
scheduler.add_seq_group(all_seq_groups[2])
# Schedule seq groups prompts.
# Only 1 seq group should be scheduled since max_seq_group is 2
# and one is prompting.
_, out = schedule_and_update_computed_tokens(scheduler)
assert set(get_sequence_groups(out)) == set([all_seq_groups[1]])
def test_scheduler_delay_factor():
block_size = 4
scheduler_config = SchedulerConfig(
"generate",
max_num_batched_tokens=100,
max_num_seqs=64,
max_model_len=16,
delay_factor=0.5,
)
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
cache_config.num_cpu_blocks = 8
cache_config.num_gpu_blocks = 8
scheduler = Scheduler(scheduler_config, cache_config, None)
# schedule first prompt
seq_group_meta, seq_group = create_dummy_prompt("0",
prompt_length=block_size,
block_size=block_size)
scheduler.add_seq_group(seq_group)
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert out.num_prefill_groups > 0
assert seq_group_meta[0].request_id == '0'
append_new_token(out, 1)
# wait for a second before scheduling next prompt
time.sleep(1)
seq_group_meta, seq_group = create_dummy_prompt("1",
prompt_length=block_size,
block_size=block_size)
scheduler.add_seq_group(seq_group)
# second prompt should *not* be scheduled
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert out.num_prefill_groups == 0
assert seq_group_meta[0].request_id == '0'
append_new_token(out, 1)
# wait for more than 0.5 second and try again
time.sleep(0.6)
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert out.num_prefill_groups > 0
assert seq_group_meta[0].request_id == '1'
append_new_token(out, 1)
def initialize_scheduler(
*,
max_num_seqs=1000,
max_token_budget=1000,
max_model_len=1000,
lora_config=None,
block_size=4,
num_cpu_blocks=8,
num_gpu_blocks=8,
enable_prefix_caching=False,
enable_chunked_prefill=False,
):
block_size = block_size
scheduler_config = SchedulerConfig(
"generate",
max_num_batched_tokens=max_token_budget,
max_num_seqs=max_num_seqs,
max_model_len=max_model_len,
enable_chunked_prefill=enable_chunked_prefill,
)
cache_config = CacheConfig(
block_size,
1.0,
1,
"auto",
enable_prefix_caching=enable_prefix_caching,
)
cache_config.num_cpu_blocks = num_cpu_blocks
cache_config.num_gpu_blocks = num_gpu_blocks
scheduler = Scheduler(scheduler_config, cache_config, lora_config)
return scheduler
def create_token_budget(token_budget: int = 10000,
max_num_seqs: int = 10000) -> SchedulingBudget:
return SchedulingBudget(
token_budget=token_budget,
max_num_seqs=max_num_seqs,
)
def add_token_budget(budget: SchedulingBudget,
num_batched_tokens: int = 0,
num_curr_seqs: int = 0):
mock_seq_group = create_dummy_prompt('10', prompt_length=60)[1]
budget.add_num_batched_tokens(mock_seq_group.request_id,
num_batched_tokens)
budget.add_num_seqs(mock_seq_group.request_id, num_curr_seqs)
def test_prefill_schedule_max_prompt_len():
"""
Test prompt longer than max_prompt_len is aborted.
"""
block_size = 4
scheduler = initialize_scheduler(max_model_len=30, block_size=block_size)
_, seq_group = create_dummy_prompt("0",
prompt_length=60,
block_size=block_size)
scheduler.add_seq_group(seq_group)
budget = create_token_budget()
output = scheduler._schedule_prefills(budget, None)
remaining_waiting = scheduler.waiting
assert len(output.ignored_seq_groups) == 1
assert len(output.seq_groups) == 0
assert budget.num_batched_tokens == 0
assert budget.num_curr_seqs == 0
assert len(remaining_waiting) == 0
def test_prefill_schedule_token_budget():
"""
Test token budget respected.
"""
block_size = 4
scheduler = initialize_scheduler(block_size=block_size,
num_cpu_blocks=64,
num_gpu_blocks=64)
budget = create_token_budget(token_budget=0)
for i in range(2):
_, seq_group = create_dummy_prompt(str(i),
prompt_length=60,
block_size=block_size)
scheduler.add_seq_group(seq_group)
# 0 token budget == nothing is scheduled.
output = scheduler._schedule_prefills(budget, None)
remaining_waiting = scheduler.waiting
assert len(output.ignored_seq_groups) == 0
assert len(output.seq_groups) == 0
assert budget.num_batched_tokens == 0
assert budget.num_curr_seqs == 0
assert len(remaining_waiting) == 2
# 60 token budget == 1 request scheduled.
budget = create_token_budget(token_budget=60)
output = scheduler._schedule_prefills(budget, None)
remaining_waiting = scheduler.waiting
assert len(output.ignored_seq_groups) == 0
assert len(output.seq_groups) == 1
assert budget.num_batched_tokens == 60
assert budget.num_curr_seqs == 1
assert len(remaining_waiting) == 1
# Test when current_batched_tokens respected.
scheduler = initialize_scheduler(block_size=block_size,
num_cpu_blocks=16,
num_gpu_blocks=16)
budget = create_token_budget(token_budget=60)
add_token_budget(budget, 30, 0)
_, seq_group = create_dummy_prompt(str(i),
prompt_length=60,
block_size=block_size)
# Cannot schedule a prompt that doesn't fit the budget.
scheduler.add_seq_group(seq_group)
output = scheduler._schedule_prefills(budget, None)
remaining_waiting = scheduler.waiting
assert len(output.ignored_seq_groups) == 0
assert len(output.seq_groups) == 0
assert budget.num_batched_tokens == 30
assert budget.num_curr_seqs == 0
assert len(remaining_waiting) == 1
budget = create_token_budget(token_budget=90)
add_token_budget(budget, 30, 0)
output = scheduler._schedule_prefills(budget, None)
remaining_waiting = scheduler.waiting
assert len(output.seq_groups) == 1
assert budget.num_batched_tokens == 90
assert budget.num_curr_seqs == 1
assert len(remaining_waiting) == 0
def test_prefill_schedule_max_seqs():
"""
Test max seq respected.
"""
block_size = 4
scheduler = initialize_scheduler(block_size=block_size,
num_cpu_blocks=64,
num_gpu_blocks=64)
budget = create_token_budget(max_num_seqs=2)
for i in range(3):
_, seq_group = create_dummy_prompt(str(i),
prompt_length=60,
block_size=block_size)
scheduler.add_seq_group(seq_group)
output = scheduler._schedule_prefills(budget, None)
remaining_waiting = scheduler.waiting
assert len(output.ignored_seq_groups) == 0
assert len(output.seq_groups) == 2
assert budget.num_batched_tokens == 120
assert budget.num_curr_seqs == 2
assert len(remaining_waiting) == 1
# Verify curr_num_seqs respected.
scheduler.waiting = deque()
budget = create_token_budget(max_num_seqs=2)
add_token_budget(budget, 0, 2)
_, seq_group = create_dummy_prompt(str(i),
prompt_length=60,
block_size=block_size)
scheduler.add_seq_group(seq_group)
output = scheduler._schedule_prefills(budget, None)
remaining_waiting = scheduler.waiting
assert len(output.ignored_seq_groups) == 0
assert len(output.seq_groups) == 0
assert budget.num_batched_tokens == 0
assert budget.num_curr_seqs == 2
assert len(remaining_waiting) == 1
def test_prefill_schedule_max_lora():
"""
Test max lora is respected and prioritized.
"""
block_size = 4
lora_config = LoRAConfig(max_lora_rank=8, max_loras=1)
scheduler = initialize_scheduler(lora_config=lora_config,
block_size=block_size,
num_cpu_blocks=64,
num_gpu_blocks=64)
budget = create_token_budget(token_budget=120)
curr_loras: set[int] = set()
for i in range(2):
_, seq_group = create_dummy_prompt(str(i),
prompt_length=60,
block_size=block_size,
lora_request=LoRARequest(
lora_name=str(i),
lora_int_id=i + 1,
lora_path="abc"))
scheduler.add_seq_group(seq_group)
# Add two more requests to verify lora is prioritized.
# 0: LoRA, 1: LoRA, 2: regular, 3: regular
# In the first iteration, index 0, 2 is scheduled.
# If a request is not scheduled because it hits max lora, it is
# prioritized. Verify that.
for i in range(2, 4):
_, seq_group = create_dummy_prompt(str(i),
prompt_length=60,
block_size=block_size)
scheduler.add_seq_group(seq_group)
# Schedule 2 requests (0 and 2)
output = scheduler._schedule_prefills(budget, curr_loras)
remaining_waiting = scheduler.waiting
assert len(output.ignored_seq_groups) == 0
assert len(output.seq_groups) == 2
assert budget.num_batched_tokens == 120
assert budget.num_curr_seqs == 2
assert len(remaining_waiting) == 2
assert len(curr_loras) == 1
# The second lora request is scheduled next as FCFS policy.
# Reset curr_loras so that it can be scheduled.
curr_loras = set()
budget = create_token_budget(token_budget=60)
output = scheduler._schedule_prefills(budget, curr_loras)
remaining_waiting = scheduler.waiting
assert len(output.seq_groups) == 1
assert output.seq_groups[0].seq_group.request_id == "1"
assert len(remaining_waiting) == 1
assert len(curr_loras) == 1
assert budget.num_batched_tokens == 60
def test_prefill_schedule_no_block_manager_capacity():
"""
Test sequence cannot be scheduled due to block manager has no capacity.
"""
block_size = 4
scheduler = initialize_scheduler(block_size=block_size,
num_gpu_blocks=128,
num_cpu_blocks=128)
budget = create_token_budget()
for i in range(3):
_, seq_group = create_dummy_prompt(str(i),
prompt_length=60,
block_size=block_size)
scheduler.add_seq_group(seq_group)
scheduler.block_manager.can_allocate = MagicMock()
scheduler.block_manager.can_allocate.return_value = AllocStatus.LATER
output = scheduler._schedule_prefills(budget, None)
remaining_waiting = scheduler.waiting
assert len(output.ignored_seq_groups) == 0
assert len(output.seq_groups) == 0
assert budget.num_batched_tokens == 0
assert budget.num_curr_seqs == 0
assert len(remaining_waiting) == 3
scheduler = initialize_scheduler()
budget = create_token_budget()
for i in range(3):
_, seq_group = create_dummy_prompt(str(i),
prompt_length=60,
block_size=block_size)
scheduler.add_seq_group(seq_group)
scheduler.block_manager.can_allocate = MagicMock()
scheduler.block_manager.can_allocate.return_value = AllocStatus.NEVER
output = scheduler._schedule_prefills(budget, None)
remaining_waiting = scheduler.waiting
assert len(output.ignored_seq_groups) == 3
assert len(output.seq_groups) == 0
assert budget.num_batched_tokens == 0
assert budget.num_curr_seqs == 0
assert len(remaining_waiting) == 0
def test_decode_schedule_preempted():
"""
Test decodes cannot be scheduled and preempted.
"""
block_size = 4
scheduler = initialize_scheduler(block_size=block_size,
num_cpu_blocks=64,
num_gpu_blocks=64)
curr_loras = None
for i in range(3):
_, seq_group = create_dummy_prompt(str(i),
prompt_length=60,
block_size=block_size)
scheduler._allocate_and_set_running(seq_group)
append_new_token_seq_group(60, seq_group, 1)
scheduler._add_seq_group_to_running(seq_group)
scheduler.block_manager.can_append_slots = MagicMock()
def cannot_append_second_group(seq_group, num_lookahead_slots):
return seq_group.request_id != "1"
scheduler.block_manager.can_append_slots.side_effect = (
cannot_append_second_group)
# 1 cannot be scheduled, and the lowest priority (request 2)
# should be preempted. 1 will also be preempted.
budget = create_token_budget()
output = scheduler._schedule_running(budget, curr_loras)
remainig_running = scheduler.running
assert len(remainig_running) == 0
assert len(output.decode_seq_groups) == 1
assert len(output.prefill_seq_groups) == 0
assert output.decode_seq_groups[0].seq_group.request_id == "0"
assert len(output.preempted) == 2
# Verify budgets are updated.
assert budget.num_batched_tokens == 1
# NOTE: When enable_chunk is False, num_seqs budget is not updated.
# assert budget.num_curr_seqs == 1
# Both should be preempted, not swapped.
assert output.blocks_to_swap_out == []
# Nothing is copied.
assert output.blocks_to_copy == []
def test_schedule_decode_blocks_to_copy_update():
"""
Verify blocks_to_copy is updated.
"""
block_size = 4
scheduler = initialize_scheduler(block_size=4,
num_cpu_blocks=16,
num_gpu_blocks=16)
_, seq_group = create_dummy_prompt("1",
prompt_length=60,
block_size=block_size)
curr_loras = None
scheduler._allocate_and_set_running(seq_group)
append_new_token_seq_group(60, seq_group, 1)
scheduler._add_seq_group_to_running(seq_group)
# The last request should be swapped out.
scheduler.block_manager.append_slots = MagicMock()
scheduler.block_manager.append_slots.return_value = [(2, 3)]
budget = create_token_budget()
output = scheduler._schedule_running(budget, curr_loras)
remaining_running = scheduler.running
assert len(remaining_running) == 0
assert len(output.decode_seq_groups) == 1
assert len(output.prefill_seq_groups) == 0
assert len(output.preempted) == 0
assert len(output.swapped_out) == 0
# Nothing is preempted.
assert output.blocks_to_swap_out == []
# Since append_slot returns the source -> dist mapping, it should
# applied.
assert output.blocks_to_copy == [(2, 3)]
def test_schedule_swapped_max_loras():
block_size = 4
lora_config = LoRAConfig(max_lora_rank=8, max_loras=1)
scheduler = initialize_scheduler(lora_config=lora_config,
block_size=block_size,
num_cpu_blocks=32,
num_gpu_blocks=32)
curr_loras: set[int] = set()
blocks_to_swap_out: list[tuple[int, int]] = []
for i in range(2):
_, seq_group = create_dummy_prompt(str(i),
prompt_length=60,
block_size=block_size,
lora_request=LoRARequest(
lora_name=str(i),
lora_int_id=i + 1,
lora_path="abc"))
scheduler._allocate_and_set_running(seq_group)
append_new_token_seq_group(60, seq_group, 1)
scheduler._swap_out(seq_group, blocks_to_swap_out)
scheduler._add_seq_group_to_swapped(seq_group)
budget = create_token_budget()
output = scheduler._schedule_swapped(budget, curr_loras)
remaining_swapped = scheduler.swapped
assert len(remaining_swapped) == 1
assert budget.num_batched_tokens == 1
assert budget.num_curr_seqs == 1
assert len(output.decode_seq_groups) == 1
assert len(output.prefill_seq_groups) == 0
assert len(curr_loras) == 1
def test_schedule_swapped_cannot_swap_in():
block_size = 4
scheduler = initialize_scheduler(block_size=block_size,
num_cpu_blocks=32,
num_gpu_blocks=32)
curr_loras = None
blocks_to_swap_out: list[tuple[int, int]] = []
for i in range(2):
_, seq_group = create_dummy_prompt(str(i),
prompt_length=60,
block_size=block_size)
scheduler._allocate_and_set_running(seq_group)
append_new_token_seq_group(60, seq_group, 1)
scheduler._swap_out(seq_group, blocks_to_swap_out)
scheduler._add_seq_group_to_swapped(seq_group)
# The last request should be swapped out.
scheduler.block_manager.can_swap_in = MagicMock()
scheduler.block_manager.can_swap_in.return_value = AllocStatus.LATER
# Since we cannot swap in, none of the requests are swapped in.
budget = create_token_budget()
output = scheduler._schedule_swapped(budget, curr_loras)
remaining_swapped = scheduler.swapped
assert len(remaining_swapped) == 2
assert budget.num_batched_tokens == 0
assert budget.num_curr_seqs == 0
assert len(output.decode_seq_groups) == 0
assert len(output.prefill_seq_groups) == 0
def test_infeasible_swap():
block_size = 4
scheduler = initialize_scheduler(block_size=block_size,
num_cpu_blocks=32,
num_gpu_blocks=32)
curr_loras = None
blocks_to_swap_out: list[tuple[int, int]] = []
for i in range(2):
_, seq_group = create_dummy_prompt(str(i),
prompt_length=60,
block_size=block_size)
scheduler._allocate_and_set_running(seq_group)
append_new_token_seq_group(60, seq_group, 1)
scheduler._swap_out(seq_group, blocks_to_swap_out)
scheduler._add_seq_group_to_swapped(seq_group)
# The last request should be swapped out.
scheduler.block_manager.can_swap_in = MagicMock()
scheduler.block_manager.can_swap_in.return_value = AllocStatus.NEVER
# Since we cannot swap in, none of the requests are swapped in.
budget = create_token_budget()
output = scheduler._schedule_swapped(budget, curr_loras)
remaining_swapped = scheduler.swapped
assert len(remaining_swapped) == 0
assert len(output.infeasible_seq_groups) == 2
assert budget.num_batched_tokens == 0
assert budget.num_curr_seqs == 0
assert len(output.decode_seq_groups) == 0
assert len(output.prefill_seq_groups) == 0
def test_schedule_swapped_blocks_to_copy():
block_size = 4
scheduler = initialize_scheduler(block_size=block_size,
num_cpu_blocks=32,
num_gpu_blocks=32)
curr_loras = None
_, seq_group = create_dummy_prompt("1",
prompt_length=60,
block_size=block_size)
scheduler._allocate_and_set_running(seq_group)
append_new_token_seq_group(60, seq_group, 1)
blocks_to_swap_out: list[tuple[int, int]] = []
scheduler._swap_out(seq_group, blocks_to_swap_out)
scheduler._add_seq_group_to_swapped(seq_group)
# The last request should be swapped out.
scheduler.block_manager.append_slots = MagicMock()
scheduler.block_manager.append_slots.return_value = [(2, 3)]
budget = create_token_budget()
output = scheduler._schedule_swapped(budget, curr_loras)
remaining_swapped = scheduler.swapped
assert len(remaining_swapped) == 0
assert len(output.decode_seq_groups) == 1
assert len(output.prefill_seq_groups) == 0
assert output.blocks_to_copy == [(2, 3)]
def test_scheduling_budget():
TOKEN_BUDGET = 4
MAX_SEQS = 4
budget = SchedulingBudget(token_budget=TOKEN_BUDGET, max_num_seqs=MAX_SEQS)
assert budget.can_schedule(num_new_tokens=1, num_new_seqs=1)
assert budget.can_schedule(num_new_tokens=4, num_new_seqs=4)
assert not budget.can_schedule(num_new_tokens=1, num_new_seqs=5)
assert not budget.can_schedule(num_new_tokens=5, num_new_seqs=1)
assert not budget.can_schedule(num_new_tokens=5, num_new_seqs=5)
assert budget.remaining_token_budget() == TOKEN_BUDGET
# Verify add/subtract num batched tokens.
_, seq_group = create_dummy_prompt("1", 3)
budget.add_num_batched_tokens(seq_group.request_id, 2)
assert budget.remaining_token_budget() == 2
assert budget.num_batched_tokens == 2
assert budget.can_schedule(num_new_tokens=2, num_new_seqs=1)
assert not budget.can_schedule(num_new_tokens=3, num_new_seqs=1)
# Verify adding another seq group is no-op.
budget.add_num_batched_tokens(seq_group.request_id, 2)
assert budget.remaining_token_budget() == 2
assert budget.num_batched_tokens == 2
budget.subtract_num_batched_tokens(seq_group.request_id, 2)
assert budget.remaining_token_budget() == 4
assert budget.num_batched_tokens == 0
budget.subtract_num_batched_tokens(seq_group.request_id, 2)
assert budget.remaining_token_budget() == 4
assert budget.num_batched_tokens == 0
# Verify add/subtract max seqs.
_, seq_group = create_dummy_prompt("1", 3)
budget.add_num_seqs(seq_group.request_id, 2)
assert budget.can_schedule(num_new_tokens=1, num_new_seqs=2)
assert not budget.can_schedule(num_new_tokens=1, num_new_seqs=3)
assert budget.num_curr_seqs == 2
# Verify adding another seq group is no-op.
budget.add_num_seqs(seq_group.request_id, 2)
assert budget.num_curr_seqs == 2
budget.subtract_num_seqs(seq_group.request_id, 2)
assert budget.num_curr_seqs == 0
budget.subtract_num_seqs(seq_group.request_id, 2)
assert budget.num_curr_seqs == 0
@pytest.mark.parametrize("enable_prefix_caching", [True, False])
def test_prefix_caching_aware_prefills(enable_prefix_caching):
"""
Test the below scenario:
For 3 sequences, seqA, seqB, seqC, share the first block as prefix.
The test verifies the below scenarios:
1. SeqA is first scheduled.
2. SeqB and SeqC can be prefilled together in a single schedule round
even though there are not enough token budgets to prefill both without
considering prefix caching.
"""
block_size = 4
max_num_batched_tokens = 12
max_seq_group = 3
scheduler = initialize_scheduler(
block_size=block_size,
num_cpu_blocks=16,
num_gpu_blocks=16,
max_token_budget=max_num_batched_tokens,
max_num_seqs=max_seq_group,
max_model_len=max_num_batched_tokens,
enable_prefix_caching=enable_prefix_caching,
)
seqA_tokens = list(range(8))
num_shared_tokens = 4
seqB_tokens = seqA_tokens[:num_shared_tokens] + list(range(
12, 16)) # Shared prefix first 4.
seqC_tokens = seqA_tokens[:num_shared_tokens] + list(range(
16, 20)) # Shared prefix first 4.
seqA, seqA_group = create_dummy_prompt("0",
prompt_tokens=seqA_tokens,
block_size=block_size)
seqB, seqB_group = create_dummy_prompt("1",
prompt_tokens=seqB_tokens,
block_size=block_size)
seqC, seqC_group = create_dummy_prompt("2",
prompt_tokens=seqC_tokens,
block_size=block_size)
# Schedule seqA prefill.
scheduler.add_seq_group(seqA_group)
metas, out, _ = scheduler.schedule()
assert (len(out.scheduled_seq_groups) == 1
and out.scheduled_seq_groups[0].seq_group == seqA_group)
assert out.scheduled_seq_groups[0].token_chunk_size == len(seqA_tokens)
# Schedule seqA decode.
append_new_token_seq_group(len(seqA_tokens), seqA_group, 999)
metas, out, _ = scheduler.schedule()
assert len(out.scheduled_seq_groups) == 1
assert out.scheduled_seq_groups[0].seq_group == seqA_group
assert out.scheduled_seq_groups[0].token_chunk_size == 1
# Schedule seqB and seqC prefills should work with prefix caching.
scheduler.add_seq_group(seqB_group)
scheduler.add_seq_group(seqC_group)
metas, out, _ = scheduler.schedule()
if enable_prefix_caching:
assert len(out.scheduled_seq_groups) == 2
assert set([
out.scheduled_seq_groups[0].seq_group,
out.scheduled_seq_groups[1].seq_group,
]) == set([seqB_group, seqC_group])
assert len(metas) == 2
for meta in metas:
assert meta.token_chunk_size == 8
assert (len(meta.computed_block_nums) == num_shared_tokens //
block_size) # 1 Block for the 8 tokens.
else:
assert len(out.scheduled_seq_groups) == 1
assert len(metas) == 1
assert metas[0].token_chunk_size == 8
assert len(metas[0].computed_block_nums) == 0 # No blocks computed.
def test_no_multiple_partial_prefills_with_chunked_prefill_and_prefix_caching(
):
"""
This test verifies that we don't schedule new prefills if there's already
a continuous prefill in progress even though the new prefills with shared
prefix can fit in the token budget:
- SeqA is being chunked prefill.
- SeqB with the same prompt shouldn't be scheduled for prefill even though
there's enough token budget to prefill the cached tokens.
- Neither should seqC be scheduled.
- When seqA is in decoding phase, seqB and seqC can be scheduled.
- Entire seqB should be prefilled since it's a full prefix cache hit.
- SeqC would be partially prefilled with the prefix shared, and the
remaining unique tokens would be prefilled (rounded down to be
block-size aligned).
"""
block_size = 2
max_num_batched_tokens = 4
max_seq_group = 3
scheduler = initialize_scheduler(
block_size=block_size,
num_cpu_blocks=16,
num_gpu_blocks=16,
max_token_budget=max_num_batched_tokens,
max_num_seqs=max_seq_group,
max_model_len=100,
enable_prefix_caching=True,
enable_chunked_prefill=True,
)
seqA_tokens = list(range(8))
seqB_tokens = seqA_tokens
seqC_shared_prefix_len = 4
seqC_tokens = seqA_tokens[:seqC_shared_prefix_len] + list(range(12, 20))
seqA, seqA_group = create_dummy_prompt("0",
prompt_tokens=seqA_tokens,
block_size=block_size)
seqB, seqB_group = create_dummy_prompt("1",
prompt_tokens=seqB_tokens,
block_size=block_size)
# Chunked prefill seqA.
scheduler.add_seq_group(seqA_group)
metas, out = schedule_and_update_computed_tokens(scheduler)
assert len(out.scheduled_seq_groups) == 1
assert out.scheduled_seq_groups[0].seq_group == seqA_group
assert out.scheduled_seq_groups[0].token_chunk_size == 4
# seqB should not be scheduled with ongoing prefills.
scheduler.add_seq_group(seqB_group)
metas, out = schedule_and_update_computed_tokens(scheduler)
assert len(out.scheduled_seq_groups) == 1
assert out.scheduled_seq_groups[0].seq_group == seqA_group
assert out.scheduled_seq_groups[0].token_chunk_size == 4
# both seqB and seqC can now be scheduled with seqA is over.
# seqA is in decoding phase.
append_new_token_seq(seqA, 999)
seqC, seqC_group = create_dummy_prompt("2",
prompt_tokens=seqC_tokens,
block_size=block_size)
scheduler.add_seq_group(seqC_group)
metas, out = schedule_and_update_computed_tokens(scheduler)
assert len(out.scheduled_seq_groups) == 3
metas = {meta.request_id: meta for meta in metas}
assert metas[seqA_group.request_id].token_chunk_size == 1 # Decode
assert (metas[seqB_group.request_id].token_chunk_size == 8
) # Fully cached prefill
assert (
metas[seqC_group.request_id].token_chunk_size == 6
), "A partial prefix of C (4 tokens) should be prefilled, with the "
"remaining tokens fit into 3 token budget (4-1 from the seqA). It will "
"then be rounded down to 2 tokens on block size, thus 6 tokens in total."