131 lines
5.2 KiB
Python
131 lines
5.2 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
import vllm.envs as envs
|
|
import vllm.plugins
|
|
from vllm.compilation.fusion import (FUSED_OPS, QUANT_OPS, FusedRMSQuantKey,
|
|
FusionPass, QuantKey)
|
|
from vllm.compilation.fx_utils import find_auto_fn, find_auto_fn_maybe
|
|
from vllm.compilation.noop_elimination import NoOpEliminationPass
|
|
from vllm.config import CompilationConfig, CompilationLevel, VllmConfig
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
|
|
CUTLASS_FP8_SUPPORTED, Fp8LinearOp, maybe_create_device_identity)
|
|
from vllm.platforms import current_platform
|
|
|
|
from .backend import TestBackend
|
|
|
|
FP8_DTYPE = current_platform.fp8_dtype()
|
|
|
|
|
|
class TestModel(torch.nn.Module):
|
|
|
|
def __init__(self, hidden_size: int, eps: float, static: bool,
|
|
cutlass_fp8_enabled: bool, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.cutlass_fp8_enabled = cutlass_fp8_enabled
|
|
self.norm = [RMSNorm(hidden_size, eps) for _ in range(3)]
|
|
self.wscale = [torch.rand(1, dtype=torch.float32) for _ in range(2)]
|
|
if static:
|
|
self.scale = [torch.rand(1, dtype=torch.float32) for _ in range(2)]
|
|
else:
|
|
self.scale = [None for _ in range(2)]
|
|
self.w = [
|
|
torch.rand(hidden_size, hidden_size).to(dtype=FP8_DTYPE).t()
|
|
for _ in range(2)
|
|
]
|
|
self.fp8_linear = Fp8LinearOp(
|
|
cutlass_fp8_supported=cutlass_fp8_enabled,
|
|
use_per_token_if_dynamic=True)
|
|
|
|
def forward(self, x):
|
|
resid = torch.sqrt(x)
|
|
y = self.norm[0](x)
|
|
|
|
x2 = self.fp8_linear.apply(y,
|
|
self.w[0],
|
|
self.wscale[0],
|
|
input_scale=self.scale[0])
|
|
# make sure resid is used for replacement to work
|
|
y2, resid = self.norm[1](x2, resid)
|
|
|
|
x3 = self.fp8_linear.apply(y2,
|
|
self.w[1],
|
|
self.wscale[1],
|
|
input_scale=self.scale[1])
|
|
y3, resid = self.norm[2](x3, resid) # use resid here
|
|
return y3
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
|
|
@pytest.mark.parametrize("hidden_size", [64, 3392, 4096])
|
|
@pytest.mark.parametrize("num_tokens", [7, 256, 533, 2048, 2049])
|
|
@pytest.mark.parametrize("eps", [1e-5, 1e-6])
|
|
@pytest.mark.parametrize("static", [True, False])
|
|
@pytest.mark.parametrize("cutlass_fp8_enabled",
|
|
[True, False] if CUTLASS_FP8_SUPPORTED else [False])
|
|
@pytest.mark.skipif(envs.VLLM_TARGET_DEVICE not in ["cuda", "rocm"],
|
|
reason="Only test on CUDA and ROCm")
|
|
def test_fusion_rmsnorm_quant(dtype, hidden_size, num_tokens, eps, static,
|
|
cutlass_fp8_enabled):
|
|
torch.set_default_device("cuda")
|
|
torch.set_default_dtype(dtype)
|
|
torch.manual_seed(1)
|
|
maybe_create_device_identity() # needed for certain non-cutlass fp8 paths
|
|
|
|
vllm_config = VllmConfig(compilation_config=CompilationConfig(
|
|
level=CompilationLevel.PIECEWISE, custom_ops=["+rms_norm"]))
|
|
with vllm.config.set_current_vllm_config(vllm_config):
|
|
# Reshape pass is needed for the fusion pass to work
|
|
config = CompilationConfig.PassConfig(enable_fusion=True,
|
|
enable_noop=True)
|
|
noop_pass = NoOpEliminationPass(config)
|
|
fusion_pass = FusionPass.instance(config)
|
|
|
|
backend = TestBackend(noop_pass, fusion_pass)
|
|
model = TestModel(hidden_size, eps, static, cutlass_fp8_enabled)
|
|
|
|
# First dimension dynamic
|
|
x = torch.rand(num_tokens, hidden_size)
|
|
torch._dynamo.mark_dynamic(x, 0)
|
|
|
|
result = model(x)
|
|
|
|
model2 = torch.compile(model, backend=backend)
|
|
result2 = model2(x)
|
|
|
|
# Higher tol for dynamic, even higher for bfloat16
|
|
if static:
|
|
ATOL, RTOL = (1e-3, 1e-3)
|
|
elif dtype == torch.float16:
|
|
ATOL, RTOL = (2e-3, 2e-3)
|
|
else:
|
|
ATOL, RTOL = (1e-2, 1e-2)
|
|
|
|
torch.testing.assert_close(result, result2, atol=ATOL, rtol=RTOL)
|
|
|
|
# Check substitution worked
|
|
pre_nodes = backend.graph_pre_pass.nodes
|
|
post_nodes = backend.graph_post_pass.nodes
|
|
|
|
# static is per-tensor, dynamic is per-token
|
|
key = QuantKey(dtype=FP8_DTYPE,
|
|
static=static,
|
|
per_tensor=static,
|
|
symmetric=True)
|
|
rms_quant = FUSED_OPS[FusedRMSQuantKey(key, False)]
|
|
add_rms_quant = FUSED_OPS[FusedRMSQuantKey(key, True)]
|
|
fp8_quant = QUANT_OPS[key]
|
|
|
|
# In pre-nodes, fp8 quant should be there and fused kernels should not
|
|
assert find_auto_fn_maybe(pre_nodes, rms_quant) is None
|
|
assert find_auto_fn_maybe(pre_nodes, add_rms_quant) is None
|
|
find_auto_fn(pre_nodes, fp8_quant)
|
|
|
|
# In post-nodes, fused kernels should be there and fp8 quant should not
|
|
find_auto_fn(post_nodes, rms_quant)
|
|
find_auto_fn(post_nodes, add_rms_quant)
|
|
assert find_auto_fn_maybe(post_nodes, fp8_quant) is None
|