vllm/tests/entrypoints/llm/test_encode.py
2024-09-26 20:35:15 -07:00

109 lines
3.2 KiB
Python

import weakref
from typing import List
import pytest
from vllm import LLM, EmbeddingRequestOutput, PoolingParams
from ...conftest import cleanup
MODEL_NAME = "intfloat/e5-mistral-7b-instruct"
PROMPTS = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
TOKEN_IDS = [
# Using ID={0, 1, 2, 3} results in NaN values,
# so we add this offset of 1000
[1000],
[1000, 1001],
[1000, 1002, 1001],
[1000, 1003, 1001, 1002],
]
@pytest.fixture(scope="module")
def llm():
# pytest caches the fixture so we use weakref.proxy to
# enable garbage collection
llm = LLM(model=MODEL_NAME,
max_num_batched_tokens=32768,
tensor_parallel_size=1,
gpu_memory_utilization=0.75,
enforce_eager=True)
with llm.deprecate_legacy_api():
yield weakref.proxy(llm)
del llm
cleanup()
def assert_outputs_equal(o1: List[EmbeddingRequestOutput],
o2: List[EmbeddingRequestOutput]):
assert [o.outputs for o in o1] == [o.outputs for o in o2]
@pytest.mark.skip_global_cleanup
@pytest.mark.parametrize('prompt_token_ids', TOKEN_IDS)
def test_v1_v2_api_consistency_single_prompt_tokens(llm: LLM,
prompt_token_ids):
pooling_params = PoolingParams()
with pytest.warns(DeprecationWarning, match="'prompt_token_ids'"):
v1_output = llm.encode(prompt_token_ids=prompt_token_ids,
pooling_params=pooling_params)
v2_output = llm.encode({"prompt_token_ids": prompt_token_ids},
pooling_params=pooling_params)
assert_outputs_equal(v1_output, v2_output)
@pytest.mark.skip_global_cleanup
def test_v1_v2_api_consistency_multi_prompt_tokens(llm: LLM):
pooling_params = PoolingParams()
with pytest.warns(DeprecationWarning, match="'prompt_token_ids'"):
v1_output = llm.encode(prompt_token_ids=TOKEN_IDS,
pooling_params=pooling_params)
v2_output = llm.encode(
[{
"prompt_token_ids": p
} for p in TOKEN_IDS],
pooling_params=pooling_params,
)
assert_outputs_equal(v1_output, v2_output)
@pytest.mark.skip_global_cleanup
def test_multiple_pooling_params(llm: LLM):
pooling_params = [
PoolingParams(),
PoolingParams(),
PoolingParams(),
PoolingParams(),
]
# Multiple PoolingParams should be matched with each prompt
outputs = llm.encode(PROMPTS, pooling_params=pooling_params)
assert len(PROMPTS) == len(outputs)
# Exception raised, if the size of params does not match the size of prompts
with pytest.raises(ValueError):
outputs = llm.encode(PROMPTS, pooling_params=pooling_params[:3])
# Single PoolingParams should be applied to every prompt
single_pooling_params = PoolingParams()
outputs = llm.encode(PROMPTS, pooling_params=single_pooling_params)
assert len(PROMPTS) == len(outputs)
# pooling_params is None, default params should be applied
outputs = llm.encode(PROMPTS, pooling_params=None)
assert len(PROMPTS) == len(outputs)