vllm/vllm/distributed/parallel_state.py

1196 lines
46 KiB
Python

# Copyright 2023 The vLLM team.
# Adapted from
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/parallel_state.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""vLLM distributed state.
It takes over the control of the distributed environment from PyTorch.
The typical workflow is:
- call `init_distributed_environment` to initialize the distributed environment.
- call `initialize_model_parallel` or `ensure_model_parallel_initialized` to
initialize the model parallel groups.
- any code dealing with the distributed stuff
- call `destroy_model_parallel` to destroy the model parallel groups.
- call `destroy_distributed_environment` to destroy the distributed environment.
If you only need to use the distributed environment without model/pipeline
parallelism, you can skip the model parallel initialization and destruction
steps.
"""
import contextlib
import pickle
import weakref
from collections import namedtuple
from contextlib import contextmanager, nullcontext
from dataclasses import dataclass
from multiprocessing import shared_memory
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from unittest.mock import patch
import torch
import torch.distributed
from torch.distributed import Backend, ProcessGroup
import vllm.envs as envs
from vllm.logger import init_logger
@dataclass
class GraphCaptureContext:
stream: torch.cuda.Stream
TensorMetadata = namedtuple("TensorMetadata", ["device", "dtype", "size"])
def _split_tensor_dict(
tensor_dict: Dict[str, Union[torch.Tensor, Any]]
) -> Tuple[List[Tuple[str, Any]], List[torch.Tensor]]:
"""Split the tensor dictionary into two parts:
1. A list of (key, value) pairs. If the value is a tensor, it is replaced
by its metadata.
2. A list of tensors.
"""
metadata_list: List[Tuple[str, Any]] = []
tensor_list: List[torch.Tensor] = []
for key, value in tensor_dict.items():
if isinstance(value, torch.Tensor):
# Note: we cannot use `value.device` here,
# because it contains not only the device type but also the device
# index (e.g. "cuda:0"). We only need the device type.
# receiving side will set the device index.
device = value.device.type
metadata_list.append(
(key, TensorMetadata(device, value.dtype, value.size())))
tensor_list.append(value)
else:
metadata_list.append((key, value))
return metadata_list, tensor_list
_group_name_counter: Dict[str, int] = {}
def _get_unique_name(name: str) -> str:
"""Get a unique name for the group.
Example:
_get_unique_name("tp") -> "tp:0"
_get_unique_name("tp") -> "tp:1"
"""
if name not in _group_name_counter:
_group_name_counter[name] = 0
newname = f"{name}:{_group_name_counter[name]}"
_group_name_counter[name] += 1
return newname
_groups: Dict[str, Callable[[], "GroupCoordinator"]] = {}
def _register_group(group: "GroupCoordinator") -> None:
# looks like Python 3.8 does not understand `ReferenceType`
_groups[group.unique_name] = weakref.ref(group) # type: ignore
@torch.library.custom_op("vllm::inplace_all_reduce", mutates_args=["tensor"])
def inplace_all_reduce(tensor: torch.Tensor, group_name: str) -> None:
assert group_name in _groups, f"Group {group_name} is not found."
group = _groups[group_name]()
if group is None:
raise ValueError(f"Group {group_name} is destroyed.")
group._all_reduce(tensor)
@inplace_all_reduce.register_fake
def _(tensor: torch.Tensor, group_name: str) -> None:
return
@torch.library.custom_op("vllm::outplace_all_reduce", mutates_args=[])
def outplace_all_reduce(tensor: torch.Tensor, group_name: str) -> torch.Tensor:
assert group_name in _groups, f"Group {group_name} is not found."
group = _groups[group_name]()
if group is None:
raise ValueError(f"Group {group_name} is destroyed.")
return group._all_reduce(tensor)
@outplace_all_reduce.register_fake
def _(tensor: torch.Tensor, group_name: str) -> torch.Tensor:
return torch.empty_like(tensor)
class GroupCoordinator:
"""
PyTorch ProcessGroup wrapper for a group of processes.
PyTorch ProcessGroup is bound to one specific communication backend,
e.g. NCCL, Gloo, MPI, etc.
GroupCoordinator takes charge of all the communication operations among
the processes in the group. It can route the communication to
a specific implementation (e.g. switch allreduce implementation
based on the tensor size and cuda graph mode).
"""
# available attributes:
rank: int # global rank
ranks: List[int] # global ranks in the group
world_size: int # size of the group
# difference between `local_rank` and `rank_in_group`:
# if we have a group of size 4 across two nodes:
# Process | Node | Rank | Local Rank | Rank in Group
# 0 | 0 | 0 | 0 | 0
# 1 | 0 | 1 | 1 | 1
# 2 | 1 | 2 | 0 | 2
# 3 | 1 | 3 | 1 | 3
local_rank: int # local rank used to assign devices
rank_in_group: int # rank inside the group
cpu_group: ProcessGroup # group for CPU communication
device_group: ProcessGroup # group for device communication
use_pynccl: bool # a hint of whether to use PyNccl
use_custom_allreduce: bool # a hint of whether to use CustomAllreduce
# communicators are only created for world size > 1
pynccl_comm: Optional[Any] # PyNccl communicator
ca_comm: Optional[Any] # Custom allreduce communicator
mq_broadcaster: Optional[Any] # shared memory broadcaster
def __init__(
self,
group_ranks: List[List[int]],
local_rank: int,
torch_distributed_backend: Union[str, Backend],
use_pynccl: bool,
use_custom_allreduce: bool,
use_tpu_communicator: bool,
use_message_queue_broadcaster: bool = False,
group_name: Optional[str] = None,
):
group_name = group_name or "anonymous"
self.unique_name = _get_unique_name(group_name)
_register_group(self)
self.rank = torch.distributed.get_rank()
self.local_rank = local_rank
self.device_group = None
self.cpu_group = None
for ranks in group_ranks:
device_group = torch.distributed.new_group(
ranks, backend=torch_distributed_backend)
# a group with `gloo` backend, to allow direct coordination between
# processes through the CPU.
cpu_group = torch.distributed.new_group(ranks, backend="gloo")
if self.rank in ranks:
self.ranks = ranks
self.world_size = len(ranks)
self.rank_in_group = ranks.index(self.rank)
self.device_group = device_group
self.cpu_group = cpu_group
assert self.cpu_group is not None
assert self.device_group is not None
if torch.cuda.is_available():
self.device = torch.device(f"cuda:{local_rank}")
else:
self.device = torch.device("cpu")
self.use_pynccl = use_pynccl
self.use_custom_allreduce = use_custom_allreduce
self.use_tpu_communicator = use_tpu_communicator
# lazy import to avoid documentation build error
from vllm.distributed.device_communicators.custom_all_reduce import (
CustomAllreduce)
from vllm.distributed.device_communicators.pynccl import (
PyNcclCommunicator)
self.pynccl_comm: Optional[PyNcclCommunicator] = None
if use_pynccl and self.world_size > 1:
self.pynccl_comm = PyNcclCommunicator(
group=self.cpu_group,
device=self.device,
)
self.ca_comm: Optional[CustomAllreduce] = None
if use_custom_allreduce and self.world_size > 1:
# Initialize a custom fast all-reduce implementation.
self.ca_comm = CustomAllreduce(
group=self.cpu_group,
device=self.device,
)
from vllm.distributed.device_communicators.tpu_communicator import (
TpuCommunicator)
self.tpu_communicator: Optional[TpuCommunicator] = None
if use_tpu_communicator and self.world_size > 1:
self.tpu_communicator = TpuCommunicator(group=self.cpu_group)
from vllm.distributed.device_communicators.shm_broadcast import (
MessageQueue)
self.mq_broadcaster: Optional[MessageQueue] = None
if use_message_queue_broadcaster and self.world_size > 1:
self.mq_broadcaster = MessageQueue.create_from_process_group(
self.cpu_group, 1 << 22, 6)
@property
def first_rank(self):
"""Return the global rank of the first process in the group"""
return self.ranks[0]
@property
def last_rank(self):
"""Return the global rank of the last process in the group"""
return self.ranks[-1]
@property
def is_first_rank(self):
"""Return whether the caller is the first process in the group"""
return self.rank == self.first_rank
@property
def is_last_rank(self):
"""Return whether the caller is the last process in the group"""
return self.rank == self.last_rank
@property
def next_rank(self):
"""Return the global rank of the process that follows the caller"""
rank_in_group = self.rank_in_group
world_size = self.world_size
return self.ranks[(rank_in_group + 1) % world_size]
@property
def prev_rank(self):
"""Return the global rank of the process that precedes the caller"""
rank_in_group = self.rank_in_group
world_size = self.world_size
return self.ranks[(rank_in_group - 1) % world_size]
@contextmanager
def graph_capture(
self, graph_capture_context: Optional[GraphCaptureContext] = None):
if graph_capture_context is None:
stream = torch.cuda.Stream()
graph_capture_context = GraphCaptureContext(stream)
else:
stream = graph_capture_context.stream
ca_comm = self.ca_comm
maybe_ca_context = nullcontext(
) if ca_comm is None else ca_comm.capture()
# ensure all initialization operations complete before attempting to
# capture the graph on another stream
curr_stream = torch.cuda.current_stream()
if curr_stream != stream:
stream.wait_stream(curr_stream)
with torch.cuda.stream(stream), maybe_ca_context:
# In graph mode, we have to be very careful about the collective
# operations. The current status is:
# allreduce \ Mode | Eager | Graph |
# --------------------------------------------
# custom allreduce | enabled | enabled |
# PyNccl | disabled| enabled |
# torch.distributed | enabled | disabled|
#
# Note that custom allreduce will have a runtime check, if the
# tensor size is too large, it will fallback to the next
# available option.
# In summary: When using CUDA graph, we use
# either custom all-reduce kernel or pynccl. When not using
# CUDA graph, we use either custom all-reduce kernel or
# PyTorch NCCL. We always prioritize using custom all-reduce
# kernel but fall back to PyTorch or pynccl if it is
# disabled or not supported.
pynccl_comm = self.pynccl_comm
maybe_pynccl_context: Any
if not pynccl_comm:
maybe_pynccl_context = nullcontext()
else:
maybe_pynccl_context = pynccl_comm.change_state(
enable=True, stream=torch.cuda.current_stream())
with maybe_pynccl_context:
yield graph_capture_context
def all_reduce(self, input_: torch.Tensor) -> torch.Tensor:
"""
User-facing all-reduce function before we actually call the
all-reduce operation.
We need this because Dynamo does not support passing an arbitrary
object (`self` in this case) to a custom op. We need to pass the
group name as a string, and then look up the group coordinator from
the group name, dispatch the all-reduce operation to the group
coordinator.
In addition, PyTorch custom ops do not support mutation or returning
a new tensor in the same op. So we need to figure out if the op is
in-place or out-of-place ahead of time.
"""
# Bypass the function if we are using only 1 GPU.
if self.world_size == 1:
return input_
if self.tpu_communicator is not None and \
not self.tpu_communicator.disabled:
# TPU handles Dynamo with its own logic.
return self._all_reduce(input_)
if self.ca_comm is not None and self.ca_comm.should_custom_ar(input_):
return torch.ops.vllm.outplace_all_reduce(
input_, group_name=self.unique_name)
else:
torch.ops.vllm.inplace_all_reduce(input_,
group_name=self.unique_name)
return input_
def _all_reduce(self, input_: torch.Tensor) -> torch.Tensor:
"""
The actual all-reduce implementation.
NOTE: This operation will be applied in-place or out-of-place.
Always assume this function modifies its input, but use the return
value as the output.
"""
ca_comm = self.ca_comm
# For TPUs, use TPU communicator.
tpu_comm = self.tpu_communicator
if tpu_comm is not None and not tpu_comm.disabled:
return tpu_comm.all_reduce(input_)
if ca_comm is not None:
out = ca_comm.custom_all_reduce(input_)
if out is not None:
return out
pynccl_comm = self.pynccl_comm
if (pynccl_comm is not None and not pynccl_comm.disabled):
pynccl_comm.all_reduce(input_)
elif input_.is_cpu:
import intel_extension_for_pytorch as ipex
ipex.distributed.all_reduce(input_, group=self.device_group)
else:
torch.distributed.all_reduce(input_, group=self.device_group)
return input_
def all_gather(self, input_: torch.Tensor, dim: int = -1) -> torch.Tensor:
world_size = self.world_size
# Bypass the function if we are using only 1 GPU.
if world_size == 1:
return input_
assert -input_.dim() <= dim < input_.dim(), (
f"Invalid dim ({dim}) for input tensor with shape {input_.size()}")
# For TPUs, use TPU communicator.
tpu_comm = self.tpu_communicator
if tpu_comm is not None and not tpu_comm.disabled:
return tpu_comm.all_gather(input_, dim)
if dim < 0:
# Convert negative dim to positive.
dim += input_.dim()
input_size = input_.size()
# Allocate output tensor.
output_tensor = torch.empty((world_size, ) + input_size,
dtype=input_.dtype,
device=input_.device)
# All-gather.
torch.distributed.all_gather_into_tensor(output_tensor,
input_,
group=self.device_group)
# Reshape
output_tensor = output_tensor.movedim(0, dim)
output_tensor = output_tensor.reshape(input_size[:dim] +
(world_size *
input_size[dim], ) +
input_size[dim + 1:])
return output_tensor
def gather(self,
input_: torch.Tensor,
dst: int = 0,
dim: int = -1) -> Optional[torch.Tensor]:
"""
NOTE: We assume that the input tensor is on the same device across
all the ranks.
NOTE: `dst` is the local rank of the destination rank.
"""
world_size = self.world_size
# Bypass the function if we are using only 1 GPU.
if world_size == 1:
return input_
assert -input_.dim() <= dim < input_.dim(), (
f"Invalid dim ({dim}) for input tensor with shape {input_.size()}")
if dim < 0:
# Convert negative dim to positive.
dim += input_.dim()
# Allocate output tensor.
if self.rank_in_group == dst:
gather_list = [torch.empty_like(input_) for _ in range(world_size)]
else:
gather_list = None
# Gather.
torch.distributed.gather(input_,
gather_list,
dst=self.ranks[dst],
group=self.device_group)
if self.rank_in_group == dst:
output_tensor = torch.cat(gather_list, dim=dim)
else:
output_tensor = None
return output_tensor
def broadcast(self, input_: torch.Tensor, src: int = 0):
"""Broadcast the input tensor.
NOTE: `src` is the local rank of the source rank.
"""
assert src < self.world_size, f"Invalid src rank ({src})"
# Bypass the function if we are using only 1 GPU.
if self.world_size == 1:
return input_
# Broadcast.
torch.distributed.broadcast(input_,
src=self.ranks[src],
group=self.device_group)
return input_
def broadcast_object(self, obj: Optional[Any] = None, src: int = 0):
"""Broadcast the input object.
NOTE: `src` is the local rank of the source rank.
"""
assert src < self.world_size, f"Invalid src rank ({src})"
# Bypass the function if we are using only 1 GPU.
if self.world_size == 1:
return obj
if self.mq_broadcaster is not None:
assert src == 0, "Message queue broadcaster only supports src=0"
return self.mq_broadcaster.broadcast_object(obj)
if self.rank_in_group == src:
torch.distributed.broadcast_object_list([obj],
src=self.ranks[src],
group=self.cpu_group)
return obj
else:
recv = [None]
torch.distributed.broadcast_object_list(recv,
src=self.ranks[src],
group=self.cpu_group)
return recv[0]
def broadcast_object_list(self,
obj_list: List[Any],
src: int = 0,
group: Optional[ProcessGroup] = None):
"""Broadcast the input object list.
NOTE: `src` is the local rank of the source rank.
"""
assert src < self.world_size, f"Invalid src rank ({src})"
# Bypass the function if we are using only 1 GPU.
if self.world_size == 1:
return obj_list
# Broadcast.
torch.distributed.broadcast_object_list(obj_list,
src=self.ranks[src],
group=self.device_group)
return obj_list
def send_object(self, obj: Any, dst: int) -> None:
"""Send the input object list to the destination rank."""
"""NOTE: `dst` is the local rank of the destination rank."""
assert dst < self.world_size, f"Invalid dst rank ({dst})"
assert dst != self.rank_in_group, (
"Invalid destination rank. Destination rank is the same "
"as the current rank.")
# Serialize object to tensor and get the size as well
object_tensor = torch.frombuffer(pickle.dumps(obj), dtype=torch.uint8)
size_tensor = torch.tensor([object_tensor.numel()],
dtype=torch.long,
device="cpu")
# Send object size
torch.distributed.send(size_tensor,
dst=self.ranks[dst],
group=self.cpu_group)
# Send object
torch.distributed.send(object_tensor,
dst=self.ranks[dst],
group=self.cpu_group)
return None
def recv_object(self, src: int) -> Any:
"""Receive the input object list from the source rank."""
"""NOTE: `src` is the local rank of the source rank."""
assert src < self.world_size, f"Invalid src rank ({src})"
assert src != self.rank_in_group, (
"Invalid source rank. Source rank is the same as the current rank."
)
size_tensor = torch.empty(1, dtype=torch.long, device="cpu")
# Receive object size
rank_size = torch.distributed.recv(size_tensor,
src=self.ranks[src],
group=self.cpu_group)
# Tensor to receive serialized objects into.
object_tensor = torch.empty( # type: ignore[call-overload]
size_tensor.item(), # type: ignore[arg-type]
dtype=torch.uint8,
device="cpu")
rank_object = torch.distributed.recv(object_tensor,
src=self.ranks[src],
group=self.cpu_group)
assert rank_object == rank_size, (
"Received object sender rank does not match the size sender rank.")
obj = pickle.loads(object_tensor.numpy().tobytes())
return obj
def broadcast_tensor_dict(
self,
tensor_dict: Optional[Dict[str, Union[torch.Tensor, Any]]] = None,
src: int = 0,
group: Optional[ProcessGroup] = None,
metadata_group: Optional[ProcessGroup] = None
) -> Optional[Dict[str, Union[torch.Tensor, Any]]]:
"""Broadcast the input tensor dictionary.
NOTE: `src` is the local rank of the source rank.
"""
# Bypass the function if we are using only 1 GPU.
if (not torch.distributed.is_initialized() or self.world_size == 1):
return tensor_dict
group = self.device_group
metadata_group = self.cpu_group
assert src < self.world_size, f"Invalid src rank ({src})"
rank_in_group = self.rank_in_group
if rank_in_group == src:
metadata_list: List[Tuple[Any, Any]] = []
assert isinstance(
tensor_dict,
dict), (f"Expecting a dictionary, got {type(tensor_dict)}")
metadata_list, tensor_list = _split_tensor_dict(tensor_dict)
# `metadata_list` lives in CPU memory.
# `broadcast_object_list` has serialization & deserialization,
# all happening on CPU. Therefore, we can use the CPU group.
self.broadcast_object(metadata_list, src=src)
async_handles = []
for tensor in tensor_list:
if tensor.numel() == 0:
# Skip broadcasting empty tensors.
continue
if tensor.is_cpu:
# use metadata_group for CPU tensors
handle = torch.distributed.broadcast(tensor,
src=self.ranks[src],
group=metadata_group,
async_op=True)
else:
# use group for GPU tensors
handle = torch.distributed.broadcast(tensor,
src=self.ranks[src],
group=group,
async_op=True)
async_handles.append(handle)
for async_handle in async_handles:
async_handle.wait()
else:
metadata_list = self.broadcast_object(None, src=src)
tensor_dict = {}
async_handles = []
for key, value in metadata_list:
if isinstance(value, TensorMetadata):
tensor = torch.empty(value.size,
dtype=value.dtype,
device=value.device)
if tensor.numel() == 0:
# Skip broadcasting empty tensors.
tensor_dict[key] = tensor
continue
if tensor.is_cpu:
# use metadata_group for CPU tensors
handle = torch.distributed.broadcast(
tensor,
src=self.ranks[src],
group=metadata_group,
async_op=True)
else:
# use group for GPU tensors
handle = torch.distributed.broadcast(
tensor,
src=self.ranks[src],
group=group,
async_op=True)
async_handles.append(handle)
tensor_dict[key] = tensor
else:
tensor_dict[key] = value
for async_handle in async_handles:
async_handle.wait()
return tensor_dict
def send_tensor_dict(
self,
tensor_dict: Dict[str, Union[torch.Tensor, Any]],
dst: Optional[int] = None,
all_gather_group: Optional["GroupCoordinator"] = None,
) -> Optional[Dict[str, Union[torch.Tensor, Any]]]:
"""Send the input tensor dictionary.
NOTE: `dst` is the local rank of the source rank.
"""
# Bypass the function if we are using only 1 GPU.
if not torch.distributed.is_initialized() or self.world_size == 1:
return tensor_dict
all_gather_size = (1 if all_gather_group is None else
all_gather_group.world_size)
all_gather_rank = (0 if all_gather_group is None else
all_gather_group.rank_in_group)
group = self.device_group
metadata_group = self.cpu_group
if dst is None:
dst = (self.rank_in_group + 1) % self.world_size
assert dst < self.world_size, f"Invalid dst rank ({dst})"
metadata_list: List[Tuple[Any, Any]] = []
assert isinstance(
tensor_dict,
dict), f"Expecting a dictionary, got {type(tensor_dict)}"
metadata_list, tensor_list = _split_tensor_dict(tensor_dict)
# `metadata_list` lives in CPU memory.
# `send_object_list` has serialization & deserialization,
# all happening on CPU. Therefore, we can use the CPU group.
self.send_object(metadata_list, dst=dst)
for tensor in tensor_list:
if tensor.numel() == 0:
# Skip sending empty tensors.
continue
# send-allgather: send only a slice, then do allgather.
if (all_gather_group is not None
and tensor.numel() % all_gather_size == 0):
tensor = tensor.reshape(all_gather_size, -1)[all_gather_rank]
if tensor.is_cpu:
# use metadata_group for CPU tensors
torch.distributed.send(tensor,
dst=self.ranks[dst],
group=metadata_group)
else:
# use group for GPU tensors
torch.distributed.send(tensor,
dst=self.ranks[dst],
group=group)
return None
def recv_tensor_dict(
self,
src: Optional[int] = None,
all_gather_group: Optional["GroupCoordinator"] = None,
) -> Optional[Dict[str, Union[torch.Tensor, Any]]]:
"""Recv the input tensor dictionary.
NOTE: `src` is the local rank of the source rank.
"""
# Bypass the function if we are using only 1 GPU.
if not torch.distributed.is_initialized() or self.world_size == 1:
return None
all_gather_size = (1 if all_gather_group is None else
all_gather_group.world_size)
all_gather_rank = (0 if all_gather_group is None else
all_gather_group.rank_in_group)
group = self.device_group
metadata_group = self.cpu_group
if src is None:
src = (self.rank_in_group - 1) % self.world_size
assert src < self.world_size, f"Invalid src rank ({src})"
recv_metadata_list = self.recv_object(src=src)
tensor_dict: Dict[str, Any] = {}
for key, value in recv_metadata_list:
if isinstance(value, TensorMetadata):
tensor = torch.empty(value.size,
dtype=value.dtype,
device=value.device)
if tensor.numel() == 0:
# Skip broadcasting empty tensors.
tensor_dict[key] = tensor
continue
# send-allgather: send only a slice, then do allgather.
use_all_gather = (all_gather_group is not None
and tensor.numel() % all_gather_size == 0)
if use_all_gather:
orig_shape = tensor.shape
tensor = tensor.reshape(all_gather_size,
-1)[all_gather_rank]
if tensor.is_cpu:
# use metadata_group for CPU tensors
torch.distributed.recv(tensor,
src=self.ranks[src],
group=metadata_group)
else:
# use group for GPU tensors
torch.distributed.recv(tensor,
src=self.ranks[src],
group=group)
if use_all_gather:
# do the allgather
tensor = all_gather_group.all_gather( # type: ignore
tensor, dim=0)
tensor = tensor.reshape(orig_shape)
tensor_dict[key] = tensor
else:
tensor_dict[key] = value
return tensor_dict
def barrier(self):
"""Barrier synchronization among the group.
NOTE: don't use `device_group` here! `barrier` in NCCL is
terrible because it is internally a broadcast operation with
secretly created GPU tensors. It is easy to mess up the current
device. Use the CPU group instead.
"""
torch.distributed.barrier(group=self.cpu_group)
def send(self, tensor: torch.Tensor, dst: Optional[int] = None) -> None:
"""Sends a tensor to the destination rank in a non-blocking way"""
"""NOTE: `dst` is the local rank of the destination rank."""
if dst is None:
dst = (self.rank_in_group + 1) % self.world_size
pynccl_comm = self.pynccl_comm
if pynccl_comm is not None and not pynccl_comm.disabled:
pynccl_comm.send(tensor, dst)
else:
torch.distributed.send(tensor, self.ranks[dst], self.device_group)
def recv(self,
size: torch.Size,
dtype: torch.dtype,
src: Optional[int] = None) -> torch.Tensor:
"""Receives a tensor from the source rank."""
"""NOTE: `src` is the local rank of the source rank."""
if src is None:
src = (self.rank_in_group - 1) % self.world_size
tensor = torch.empty(size, dtype=dtype, device=self.device)
pynccl_comm = self.pynccl_comm
if pynccl_comm is not None and not pynccl_comm.disabled:
pynccl_comm.recv(tensor, src)
else:
torch.distributed.recv(tensor, self.ranks[src], self.device_group)
return tensor
def destroy(self):
if self.device_group is not None:
torch.distributed.destroy_process_group(self.device_group)
self.device_group = None
if self.cpu_group is not None:
torch.distributed.destroy_process_group(self.cpu_group)
self.cpu_group = None
if self.pynccl_comm is not None:
self.pynccl_comm = None
if self.ca_comm is not None:
self.ca_comm = None
if self.mq_broadcaster is not None:
self.mq_broadcaster = None
_WORLD: Optional[GroupCoordinator] = None
def get_world_group() -> GroupCoordinator:
assert _WORLD is not None, ("world group is not initialized")
return _WORLD
def init_world_group(ranks: List[int], local_rank: int,
backend: str) -> GroupCoordinator:
return GroupCoordinator(
group_ranks=[ranks],
local_rank=local_rank,
torch_distributed_backend=backend,
use_pynccl=False,
use_custom_allreduce=False,
use_tpu_communicator=False,
group_name="world",
)
def init_model_parallel_group(
group_ranks: List[List[int]],
local_rank: int,
backend: str,
use_custom_allreduce: Optional[bool] = None,
use_message_queue_broadcaster: bool = False,
group_name: Optional[str] = None,
) -> GroupCoordinator:
if use_custom_allreduce is None:
use_custom_allreduce = _ENABLE_CUSTOM_ALL_REDUCE
return GroupCoordinator(
group_ranks=group_ranks,
local_rank=local_rank,
torch_distributed_backend=backend,
use_pynccl=True,
use_custom_allreduce=use_custom_allreduce,
use_tpu_communicator=True,
use_message_queue_broadcaster=use_message_queue_broadcaster,
group_name=group_name,
)
_TP: Optional[GroupCoordinator] = None
def get_tp_group() -> GroupCoordinator:
assert _TP is not None, ("tensor model parallel group is not initialized")
return _TP
# kept for backward compatibility
get_tensor_model_parallel_group = get_tp_group
_PP: Optional[GroupCoordinator] = None
def get_pp_group() -> GroupCoordinator:
assert _PP is not None, (
"pipeline model parallel group is not initialized")
return _PP
# kept for backward compatibility
get_pipeline_model_parallel_group = get_pp_group
@contextmanager
def graph_capture():
"""
`graph_capture` is a context manager which should surround the code that
is capturing the CUDA graph. Its main purpose is to ensure that the
some operations will be run after the graph is captured, before the graph
is replayed. It returns a `GraphCaptureContext` object which contains the
necessary data for the graph capture. Currently, it only contains the
stream that the graph capture is running on. This stream is set to the
current CUDA stream when the context manager is entered and reset to the
default stream when the context manager is exited. This is to ensure that
the graph capture is running on a separate stream from the default stream,
in order to explicitly distinguish the kernels to capture
from other kernels possibly launched on background in the default stream.
"""
with get_tp_group().graph_capture() as context, get_pp_group(
).graph_capture(context):
yield context
logger = init_logger(__name__)
_ENABLE_CUSTOM_ALL_REDUCE = True
def set_custom_all_reduce(enable: bool):
global _ENABLE_CUSTOM_ALL_REDUCE
_ENABLE_CUSTOM_ALL_REDUCE = enable
def init_distributed_environment(
world_size: int = -1,
rank: int = -1,
distributed_init_method: str = "env://",
local_rank: int = -1,
backend: str = "nccl",
):
logger.debug(
"world_size=%d rank=%d local_rank=%d "
"distributed_init_method=%s backend=%s", world_size, rank, local_rank,
distributed_init_method, backend)
if not torch.distributed.is_initialized():
assert distributed_init_method is not None, (
"distributed_init_method must be provided when initializing "
"distributed environment")
# this backend is used for WORLD
torch.distributed.init_process_group(
backend=backend,
init_method=distributed_init_method,
world_size=world_size,
rank=rank)
# set the local rank
# local_rank is not available in torch ProcessGroup,
# see https://github.com/pytorch/pytorch/issues/122816
if local_rank == -1:
# local rank not set, this usually happens in single-node
# setting, where we can use rank as local rank
if distributed_init_method == "env://":
local_rank = envs.LOCAL_RANK
else:
local_rank = rank
global _WORLD
if _WORLD is None:
ranks = list(range(torch.distributed.get_world_size()))
_WORLD = init_world_group(ranks, local_rank, backend)
else:
assert _WORLD.world_size == torch.distributed.get_world_size(), (
"world group already initialized with a different world size")
def initialize_model_parallel(
tensor_model_parallel_size: int = 1,
pipeline_model_parallel_size: int = 1,
backend: Optional[str] = None,
) -> None:
"""
Initialize model parallel groups.
Arguments:
tensor_model_parallel_size: number of GPUs used for tensor model
parallelism.
pipeline_model_parallel_size: number of GPUs used for pipeline model
parallelism.
Let's say we have a total of 8 GPUs denoted by g0 ... g7 and we
use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize
the model pipeline. The present function will
create 4 tensor model-parallel groups and 2 pipeline model-parallel groups:
4 tensor model-parallel groups:
[g0, g1], [g2, g3], [g4, g5], [g6, g7]
2 pipeline model-parallel groups:
[g0, g2, g4, g6], [g1, g3, g5, g7]
Note that for efficiency, the caller should make sure adjacent ranks
are on the same DGX box. For example if we are using 2 DGX-1 boxes
with a total of 16 GPUs, rank 0 to 7 belong to the first box and
ranks 8 to 15 belong to the second box.
"""
# Get world size and rank. Ensure some consistencies.
assert torch.distributed.is_initialized()
world_size: int = torch.distributed.get_world_size()
backend = backend or torch.distributed.get_backend(
get_world_group().device_group)
if (world_size !=
tensor_model_parallel_size * pipeline_model_parallel_size):
raise RuntimeError(
f"world_size ({world_size}) is not equal to "
f"tensor_model_parallel_size ({tensor_model_parallel_size}) x "
f"pipeline_model_parallel_size ({pipeline_model_parallel_size})")
# Build the tensor model-parallel groups.
num_tensor_model_parallel_groups: int = (world_size //
tensor_model_parallel_size)
global _TP
assert _TP is None, ("tensor model parallel group is already initialized")
group_ranks = []
for i in range(num_tensor_model_parallel_groups):
ranks = list(
range(i * tensor_model_parallel_size,
(i + 1) * tensor_model_parallel_size))
group_ranks.append(ranks)
# message queue broadcaster is only used in tensor model parallel group
_TP = init_model_parallel_group(group_ranks,
get_world_group().local_rank,
backend,
use_message_queue_broadcaster=True,
group_name="tp")
# Build the pipeline model-parallel groups.
num_pipeline_model_parallel_groups: int = (world_size //
pipeline_model_parallel_size)
global _PP
assert _PP is None, (
"pipeline model parallel group is already initialized")
group_ranks = []
for i in range(num_pipeline_model_parallel_groups):
ranks = list(range(i, world_size, num_pipeline_model_parallel_groups))
group_ranks.append(ranks)
# pipeline parallel does not need custom allreduce
_PP = init_model_parallel_group(group_ranks,
get_world_group().local_rank,
backend,
use_custom_allreduce=False,
group_name="pp")
def ensure_model_parallel_initialized(
tensor_model_parallel_size: int,
pipeline_model_parallel_size: int,
backend: Optional[str] = None,
) -> None:
"""Helper to initialize model parallel groups if they are not initialized,
or ensure tensor-parallel and pipeline-parallel sizes are equal to expected
values if the model parallel groups are initialized.
"""
backend = backend or torch.distributed.get_backend(
get_world_group().device_group)
if not model_parallel_is_initialized():
initialize_model_parallel(tensor_model_parallel_size,
pipeline_model_parallel_size, backend)
return
assert (
get_tensor_model_parallel_world_size() == tensor_model_parallel_size
), ("tensor parallel group already initialized, but of unexpected size: "
f"{get_tensor_model_parallel_world_size()=} vs. "
f"{tensor_model_parallel_size=}")
pp_world_size = get_pp_group().world_size
assert (pp_world_size == pipeline_model_parallel_size), (
"pipeline parallel group already initialized, but of unexpected size: "
f"{pp_world_size=} vs. "
f"{pipeline_model_parallel_size=}")
def model_parallel_is_initialized():
"""Check if tensor and pipeline parallel groups are initialized."""
return (_TP is not None and _PP is not None)
_TP_STATE_PATCHED = False
@contextmanager
def patch_tensor_parallel_group(tp_group: GroupCoordinator):
"""Patch the tp group temporarily until this function ends.
This method is for draft workers of speculative decoding to run draft model
with different tp degree from that of target model workers.
Args:
tp_group (GroupCoordinator): the tp group coordinator
"""
global _TP_STATE_PATCHED
assert not _TP_STATE_PATCHED, "Should not call when it's already patched"
_TP_STATE_PATCHED = True
old_tp_group = get_tp_group()
global _TP
_TP = tp_group
try:
yield
finally:
# restore the original state
_TP_STATE_PATCHED = False
_TP = old_tp_group
def get_tensor_model_parallel_world_size():
"""Return world size for the tensor model parallel group."""
return get_tp_group().world_size
def get_tensor_model_parallel_rank():
"""Return my rank for the tensor model parallel group."""
return get_tp_group().rank_in_group
def destroy_model_parallel():
"""Set the groups to none and destroy them."""
global _TP
if _TP:
_TP.destroy()
_TP = None
global _PP
if _PP:
_PP.destroy()
_PP = None
def destroy_distributed_environment():
global _WORLD
if _WORLD:
_WORLD.destroy()
_WORLD = None
if torch.distributed.is_initialized():
torch.distributed.destroy_process_group()
def in_the_same_node_as(pg: ProcessGroup, source_rank: int = 0) -> List[bool]:
"""
This is a collective operation that returns if each rank is in the same node
as the source rank. It tests if processes are attached to the same
memory system (shared access to shared memory).
"""
assert torch.distributed.get_backend(
pg) != torch.distributed.Backend.NCCL, (
"in_the_same_node_as should be tested with a non-NCCL group.")
# local rank inside the group
rank = torch.distributed.get_rank(group=pg)
world_size = torch.distributed.get_world_size(group=pg)
# local tensor in each process to store the result
is_in_the_same_node = torch.tensor([0] * world_size, dtype=torch.int32)
# global ranks of the processes in the group
ranks = torch.distributed.get_process_group_ranks(pg)
magic_message = b"magic_message"
shm = None
try:
with contextlib.suppress(OSError):
if rank == source_rank:
# create a shared memory segment
shm = shared_memory.SharedMemory(create=True, size=128)
shm.buf[:len(magic_message)] = magic_message
torch.distributed.broadcast_object_list([shm.name],
src=ranks[source_rank],
group=pg)
is_in_the_same_node[rank] = 1
else:
# try to open the shared memory segment
recv = [None]
torch.distributed.broadcast_object_list(recv,
src=ranks[source_rank],
group=pg)
name = recv[0]
# fix to https://stackoverflow.com/q/62748654/9191338
# Python incorrectly tracks shared memory even if it is not
# created by the process. The following patch is a workaround.
with patch("multiprocessing.resource_tracker.register",
lambda *args, **kwargs: None):
shm = shared_memory.SharedMemory(name=name)
if shm.buf[:len(magic_message)] == magic_message:
is_in_the_same_node[rank] = 1
except Exception as e:
logger.error("Error ignored in is_in_the_same_node: %s", e)
finally:
if shm:
shm.close()
torch.distributed.barrier(group=pg)
# clean up the shared memory segment
with contextlib.suppress(OSError):
if rank == source_rank and shm:
shm.unlink()
torch.distributed.all_reduce(is_in_the_same_node, group=pg)
return [x == 1 for x in is_in_the_same_node.tolist()]