2024-12-20 16:46:24 +00:00

706 lines
27 KiB
Python

"""Utilities for downloading and initializing model weights."""
import fnmatch
import glob
import hashlib
import json
import os
import tempfile
from collections import defaultdict
from typing import (Any, Callable, Dict, Generator, Iterable, List, Optional,
Tuple, Union)
import filelock
import gguf
import huggingface_hub.constants
import numpy as np
import torch
from huggingface_hub import HfFileSystem, hf_hub_download, snapshot_download
from safetensors.torch import load_file, safe_open, save_file
from tqdm.auto import tqdm
from vllm.config import LoadConfig, ModelConfig
from vllm.distributed import get_tensor_model_parallel_rank
from vllm.logger import init_logger
from vllm.model_executor.layers.quantization import (QuantizationConfig,
get_quantization_config)
from vllm.model_executor.layers.quantization.schema import QuantParamSchema
from vllm.platforms import current_platform
from vllm.utils import print_warning_once
logger = init_logger(__name__)
# use system-level temp directory for file locks, so that multiple users
# can share the same lock without error.
# lock files in the temp directory will be automatically deleted when the
# system reboots, so users will not complain about annoying lock files
temp_dir = tempfile.gettempdir()
def enable_hf_transfer():
"""automatically activates hf_transfer
"""
if "HF_HUB_ENABLE_HF_TRANSFER" not in os.environ:
try:
# enable hf hub transfer if available
import hf_transfer # type: ignore # noqa
huggingface_hub.constants.HF_HUB_ENABLE_HF_TRANSFER = True
except ImportError:
pass
enable_hf_transfer()
class DisabledTqdm(tqdm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs, disable=True)
def get_lock(model_name_or_path: str, cache_dir: Optional[str] = None):
lock_dir = cache_dir or temp_dir
os.makedirs(os.path.dirname(lock_dir), exist_ok=True)
model_name = model_name_or_path.replace("/", "-")
hash_name = hashlib.sha256(model_name.encode()).hexdigest()
# add hash to avoid conflict with old users' lock files
lock_file_name = hash_name + model_name + ".lock"
# mode 0o666 is required for the filelock to be shared across users
lock = filelock.FileLock(os.path.join(lock_dir, lock_file_name),
mode=0o666)
return lock
def _shared_pointers(tensors):
ptrs = defaultdict(list)
for k, v in tensors.items():
ptrs[v.data_ptr()].append(k)
failing = []
for _, names in ptrs.items():
if len(names) > 1:
failing.append(names)
return failing
def convert_bin_to_safetensor_file(
pt_filename: str,
sf_filename: str,
) -> None:
loaded = torch.load(pt_filename, map_location="cpu")
if "state_dict" in loaded:
loaded = loaded["state_dict"]
shared = _shared_pointers(loaded)
for shared_weights in shared:
for name in shared_weights[1:]:
loaded.pop(name)
# For tensors to be contiguous
loaded = {k: v.contiguous() for k, v in loaded.items()}
dirname = os.path.dirname(sf_filename)
os.makedirs(dirname, exist_ok=True)
save_file(loaded, sf_filename, metadata={"format": "pt"})
# check file size
sf_size = os.stat(sf_filename).st_size
pt_size = os.stat(pt_filename).st_size
if (sf_size - pt_size) / pt_size > 0.01:
raise RuntimeError(f"""The file size different is more than 1%:
- {sf_filename}: {sf_size}
- {pt_filename}: {pt_size}
""")
# check if the tensors are the same
reloaded = load_file(sf_filename)
for k in loaded:
pt_tensor = loaded[k]
sf_tensor = reloaded[k]
if not torch.equal(pt_tensor, sf_tensor):
raise RuntimeError(f"The output tensors do not match for key {k}")
# TODO(woosuk): Move this to other place.
def get_quant_config(model_config: ModelConfig,
load_config: LoadConfig) -> QuantizationConfig:
quant_cls = get_quantization_config(model_config.quantization)
# GGUF doesn't have config file
if model_config.quantization == "gguf":
return quant_cls.from_config({})
# Read the quantization config from the HF model config, if available.
hf_quant_config = getattr(model_config.hf_config, "quantization_config",
None)
# some vision model may keep quantization_config in their text_config
hf_text_config = getattr(model_config.hf_config, "text_config", None)
if hf_quant_config is None and hf_text_config is not None:
hf_quant_config = getattr(hf_text_config, "quantization_config", None)
if hf_quant_config is None:
# compressed-tensors uses a compressions_config
hf_quant_config = getattr(model_config.hf_config, "compression_config",
None)
if hf_quant_config is not None:
return quant_cls.from_config(hf_quant_config)
# In case of bitsandbytes/QLoRA, get quant config from the adapter model.
if model_config.quantization == "bitsandbytes":
if (not load_config.model_loader_extra_config
or "qlora_adapter_name_or_path"
not in load_config.model_loader_extra_config):
return quant_cls.from_config({"adapter_name_or_path": ""})
model_name_or_path = load_config.model_loader_extra_config[
"qlora_adapter_name_or_path"]
else:
model_name_or_path = model_config.model
is_local = os.path.isdir(model_name_or_path)
if not is_local:
# Download the config files.
with get_lock(model_name_or_path, load_config.download_dir):
hf_folder = snapshot_download(
model_name_or_path,
revision=model_config.revision,
allow_patterns="*.json",
cache_dir=load_config.download_dir,
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
tqdm_class=DisabledTqdm,
)
else:
hf_folder = model_name_or_path
possible_config_filenames = quant_cls.get_config_filenames()
# If the quantization config is not found, use the default config.
if not possible_config_filenames:
return quant_cls()
config_files = glob.glob(os.path.join(hf_folder, "*.json"))
quant_config_files = [
f for f in config_files if any(
f.endswith(x) for x in possible_config_filenames)
]
if len(quant_config_files) == 0:
raise ValueError(
f"Cannot find the config file for {model_config.quantization}")
if len(quant_config_files) > 1:
raise ValueError(
f"Found multiple config files for {model_config.quantization}: "
f"{quant_config_files}")
quant_config_file = quant_config_files[0]
with open(quant_config_file) as f:
config = json.load(f)
if model_config.quantization == "bitsandbytes":
config["adapter_name_or_path"] = model_name_or_path
elif model_config.quantization == "modelopt":
if config["producer"]["name"] == "modelopt":
return quant_cls.from_config(config)
else:
raise ValueError(
f"Unsupported quantization config"
f" found for {model_config.quantization} in {f}.")
return quant_cls.from_config(config)
def download_weights_from_hf(
model_name_or_path: str,
cache_dir: Optional[str],
allow_patterns: List[str],
revision: Optional[str] = None,
ignore_patterns: Optional[Union[str, List[str]]] = None,
) -> str:
"""Download model weights from Hugging Face Hub.
Args:
model_name_or_path (str): The model name or path.
cache_dir (Optional[str]): The cache directory to store the model
weights. If None, will use HF defaults.
allow_patterns (List[str]): The allowed patterns for the
weight files. Files matched by any of the patterns will be
downloaded.
revision (Optional[str]): The revision of the model.
ignore_patterns (Optional[Union[str, List[str]]]): The patterns to
filter out the weight files. Files matched by any of the patterns
will be ignored.
Returns:
str: The path to the downloaded model weights.
"""
if not huggingface_hub.constants.HF_HUB_OFFLINE:
# Before we download we look at that is available:
fs = HfFileSystem()
file_list = fs.ls(model_name_or_path, detail=False, revision=revision)
# depending on what is available we download different things
for pattern in allow_patterns:
matching = fnmatch.filter(file_list, pattern)
if len(matching) > 0:
allow_patterns = [pattern]
break
logger.info("Using model weights format %s", allow_patterns)
# Use file lock to prevent multiple processes from
# downloading the same model weights at the same time.
with get_lock(model_name_or_path, cache_dir):
hf_folder = snapshot_download(
model_name_or_path,
allow_patterns=allow_patterns,
ignore_patterns=ignore_patterns,
cache_dir=cache_dir,
tqdm_class=DisabledTqdm,
revision=revision,
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
)
return hf_folder
def download_safetensors_index_file_from_hf(
model_name_or_path: str,
index_file: str,
cache_dir: Optional[str],
revision: Optional[str] = None,
) -> None:
"""Download hf safetensors index file from Hugging Face Hub.
Args:
model_name_or_path (str): The model name or path.
cache_dir (Optional[str]): The cache directory to store the model
weights. If None, will use HF defaults.
revision (Optional[str]): The revision of the model.
"""
# Use file lock to prevent multiple processes from
# downloading the same model weights at the same time.
with get_lock(model_name_or_path, cache_dir):
try:
# Download the safetensors index file.
hf_hub_download(
repo_id=model_name_or_path,
filename=index_file,
cache_dir=cache_dir,
revision=revision,
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
)
# If file not found on remote or locally, we should not fail since
# only some models will have index_file.
except huggingface_hub.utils.EntryNotFoundError:
logger.info("No %s found in remote.", index_file)
except huggingface_hub.utils.LocalEntryNotFoundError:
logger.info("No %s found in local cache.", index_file)
# For models like Mistral-7B-v0.3, there are both sharded
# safetensors files and a consolidated safetensors file.
# Passing both of these to the weight loader functionality breaks.
# So, we use the index_file to
# look up which safetensors files should be used.
def filter_duplicate_safetensors_files(hf_weights_files: List[str],
hf_folder: str,
index_file: str) -> List[str]:
# model.safetensors.index.json is a mapping from keys in the
# torch state_dict to safetensors file holding that weight.
index_file_name = os.path.join(hf_folder, index_file)
if not os.path.isfile(index_file_name):
return hf_weights_files
# Iterate through the weight_map (weight_name: safetensors files)
# to identify weights that we should use.
with open(index_file_name) as f:
weight_map = json.load(f)["weight_map"]
weight_files_in_index = set()
for weight_name in weight_map:
weight_files_in_index.add(
os.path.join(hf_folder, weight_map[weight_name]))
# Filter out any fields that are not found in the index file.
hf_weights_files = [
f for f in hf_weights_files if f in weight_files_in_index
]
return hf_weights_files
def filter_files_not_needed_for_inference(
hf_weights_files: List[str]) -> List[str]:
"""
Exclude files that are not needed for inference.
See https://github.com/huggingface/transformers/blob/v4.34.0/src/transformers/trainer.py#L227-L233
"""
blacklist = [
"training_args.bin",
"optimizer.bin",
"optimizer.pt",
"scheduler.pt",
"scaler.pt",
]
hf_weights_files = [
f for f in hf_weights_files
if not any(f.endswith(x) for x in blacklist)
]
return hf_weights_files
# explicitly use pure text format, with a newline at the end
# this makes it impossible to see the animation in the progress bar
# but will avoid messing up with ray or multiprocessing, which wraps
# each line of output with some prefix.
_BAR_FORMAT = "{desc}: {percentage:3.0f}% Completed | {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]\n" # noqa: E501
def np_cache_weights_iterator(
model_name_or_path: str, cache_dir: Optional[str], hf_folder: str,
hf_weights_files: List[str]
) -> Generator[Tuple[str, torch.Tensor], None, None]:
"""Iterate over the weights in the model np files.
Will dump the model weights to numpy files if they are not already dumped.
"""
enable_tqdm = not torch.distributed.is_initialized(
) or torch.distributed.get_rank() == 0
# Convert the model weights from torch tensors to numpy arrays for
# faster loading.
np_folder = os.path.join(hf_folder, "np")
os.makedirs(np_folder, exist_ok=True)
weight_names_file = os.path.join(np_folder, "weight_names.json")
# Use file lock to prevent multiple processes from
# dumping the same model weights to numpy at the same time.
with get_lock(model_name_or_path, cache_dir):
if not os.path.exists(weight_names_file):
weight_names: List[str] = []
for bin_file in tqdm(
hf_weights_files,
desc="Loading np_cache checkpoint shards",
disable=not enable_tqdm,
bar_format=_BAR_FORMAT,
):
state = torch.load(bin_file, map_location="cpu")
for name, param in state.items():
param_path = os.path.join(np_folder, name)
with open(param_path, "wb") as f:
np.save(f, param.cpu().detach().numpy())
weight_names.append(name)
with open(weight_names_file, "w") as f:
json.dump(weight_names, f)
with open(weight_names_file) as f:
weight_names = json.load(f)
for name in weight_names:
param_path = os.path.join(np_folder, name)
with open(param_path, "rb") as f:
param = np.load(f)
yield name, torch.from_numpy(param)
def safetensors_weights_iterator(
hf_weights_files: List[str]
) -> Generator[Tuple[str, torch.Tensor], None, None]:
"""Iterate over the weights in the model safetensor files."""
enable_tqdm = not torch.distributed.is_initialized(
) or torch.distributed.get_rank() == 0
for st_file in tqdm(
hf_weights_files,
desc="Loading safetensors checkpoint shards",
disable=not enable_tqdm,
bar_format=_BAR_FORMAT,
):
with safe_open(st_file, framework="pt") as f:
for name in f.keys(): # noqa: SIM118
param = f.get_tensor(name)
yield name, param
def runai_safetensors_weights_iterator(
hf_weights_files: List[str]
) -> Generator[Tuple[str, torch.Tensor], None, None]:
"""Iterate over the weights in the model safetensor files."""
try:
from runai_model_streamer import SafetensorsStreamer
except ImportError as err:
raise ImportError(
"Please install Run:ai optional dependency."
"You can install it with: pip install vllm[runai]") from err
enable_tqdm = not torch.distributed.is_initialized(
) or torch.distributed.get_rank() == 0
with SafetensorsStreamer() as streamer:
for st_file in tqdm(
hf_weights_files,
desc="Loading safetensors using Runai Model Streamer",
disable=not enable_tqdm,
bar_format=_BAR_FORMAT,
):
streamer.stream_file(st_file)
yield from streamer.get_tensors()
def pt_weights_iterator(
hf_weights_files: List[str]
) -> Generator[Tuple[str, torch.Tensor], None, None]:
"""Iterate over the weights in the model bin/pt files."""
enable_tqdm = not torch.distributed.is_initialized(
) or torch.distributed.get_rank() == 0
for bin_file in tqdm(
hf_weights_files,
desc="Loading pt checkpoint shards",
disable=not enable_tqdm,
bar_format=_BAR_FORMAT,
):
state = torch.load(bin_file, map_location="cpu")
yield from state.items()
del state
torch.cuda.empty_cache()
def get_gguf_extra_tensor_names(
gguf_file: str, gguf_to_hf_name_map: Dict[str, str]) -> List[str]:
reader = gguf.GGUFReader(gguf_file)
expected_gguf_keys = set(gguf_to_hf_name_map.keys())
exact_gguf_keys = set([tensor.name for tensor in reader.tensors])
extra_keys = expected_gguf_keys - exact_gguf_keys
return [gguf_to_hf_name_map[key] for key in extra_keys]
def gguf_quant_weights_iterator(
gguf_file: str, gguf_to_hf_name_map: Dict[str, str]
) -> Generator[Tuple[str, torch.Tensor], None, None]:
"""
Iterate over the quant weights in the model gguf files and convert
them to torch tensors
"""
reader = gguf.GGUFReader(gguf_file)
for tensor in reader.tensors:
if tensor.name in gguf_to_hf_name_map:
weight_type = tensor.tensor_type
name = gguf_to_hf_name_map[tensor.name]
if weight_type.name != "F32":
weight_type_name = name.replace("weight", "qweight_type")
weight_type = torch.tensor(weight_type)
yield weight_type_name, weight_type
for tensor in reader.tensors:
if tensor.name in gguf_to_hf_name_map:
weight = tensor.data
weight_type = tensor.tensor_type
name = gguf_to_hf_name_map[tensor.name]
if weight_type.name != "F32":
name = name.replace("weight", "qweight")
param = torch.tensor(weight)
yield name, param
def kv_cache_scales_loader(
filename: str, tp_rank: int, tp_size: int, num_hidden_layers: int,
model_type: Optional[str]) -> Iterable[Tuple[int, float]]:
"""
A simple utility to read in KV cache scaling factors that have been
previously serialized to disk. Used by the model to populate the appropriate
KV cache scaling factors. The serialization should represent a dictionary
whose keys are the TP ranks and values are another dictionary mapping layers
to their KV cache scaling factors.
Keep this function in sync with the output of examples/fp8/extract_scales.py
"""
try:
with open(filename) as f:
context = {
"model_type": model_type,
"num_hidden_layers": num_hidden_layers,
"tp_rank": tp_rank,
"tp_size": tp_size,
}
schema_dct = json.load(f)
schema = QuantParamSchema.model_validate(schema_dct,
context=context)
layer_scales_map = schema.kv_cache.scaling_factor[tp_rank]
return layer_scales_map.items()
except FileNotFoundError:
logger.error("File or directory '%s' not found.", filename)
except json.JSONDecodeError:
logger.error("Error decoding JSON in file '%s'.", filename)
except Exception:
logger.exception("An error occurred while reading '%s'.", filename)
# This section is reached if and only if any of the excepts are hit
# Return an empty iterable (list) => no KV cache scales are loaded
# which ultimately defaults to 1.0 scales
logger.warning(
"Defaulting to KV cache scaling factors = 1.0 for all "
"layers in TP rank %d as an error occurred during loading.", tp_rank)
return []
def convert_pyslice_to_tensor(x: Any) -> torch.Tensor:
"""convert PySafeSlice object from safetensors to torch.Tensor
PySafeSlice object supports indexing, which is done before loading the
actual tensor and can reduce the amount of memory being read into the
memory. However, it does not support more advanced functionalities
like `.view()` or `.t()`. Therefore, if we need to modify the loaded
tensor with these more complicated operators, we need to convert to
tensor first.
"""
if not isinstance(x, torch.Tensor):
x = x[:]
return x
def default_weight_loader(param: torch.Tensor,
loaded_weight: torch.Tensor) -> None:
"""Default weight loader."""
try:
if param.numel() == 1 and loaded_weight.numel() == 1:
# Sometimes scalar values aren't considered tensors with shapes
# so if both param and loaded_weight are a scalar,
# "broadcast" instead of copy
param.data.fill_(loaded_weight.item())
else:
assert param.size() == loaded_weight.size(), (
f"Attempted to load weight ({loaded_weight.size()}) "
f"into parameter ({param.size()})")
param.data.copy_(loaded_weight)
except Exception:
# NOTE: This exception is added for the purpose of setting breakpoint to
# debug weight loading issues.
raise
def row_parallel_weight_loader(param: torch.Tensor,
loaded_weight: torch.Tensor) -> None:
"""Load weights that are row-parallelized."""
tp_rank = get_tensor_model_parallel_rank()
shard_dim = 0 if param.dim() != 1 else None
if shard_dim is not None:
shard_size = param.data.shape[shard_dim]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(shard_dim, start_idx, shard_size)
return default_weight_loader(param, loaded_weight)
LoaderFunction = Callable[[torch.Tensor, torch.Tensor], torch.Tensor]
def sharded_weight_loader(shard_axis: int) -> LoaderFunction:
"""Create a weight loader that shards the weights along the given axis"""
def loader(param: torch.Tensor, loaded_weight: torch.Tensor) -> None:
tp_rank = get_tensor_model_parallel_rank()
shard_size = param.data.shape[shard_axis]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(shard_axis, start_idx, shard_size)
return default_weight_loader(param, loaded_weight)
return loader
def composed_weight_loader(
loader: LoaderFunction, fn: Callable[[torch.Tensor],
torch.Tensor]) -> LoaderFunction:
"""Create a weight loader that post-processes the weights after loading"""
def composed_loader(param: torch.Tensor,
loaded_weight: torch.Tensor) -> None:
loader(param, loaded_weight)
param.data.copy_(fn(param))
return
return composed_loader
def initialize_dummy_weights(
model: torch.nn.Module,
low: float = -1e-3,
high: float = 1e-3,
seed: int = 1234,
) -> None:
"""Initialize model weights with random values.
The model weights must be randomly initialized for accurate performance
measurements. Additionally, the model weights should not cause NaNs in the
forward pass. We empirically found that initializing the weights with
values between -1e-3 and 1e-3 works well for most models.
We use per-parameter random seed, so that dummy weights are consistent,
even if the model is partitioned across multiple devices. When the seed
is fixed, the random values generated by this function only depends on
the parameter's number of elements and its data type.
"""
for param in model.state_dict().values():
if torch.is_floating_point(param):
if current_platform.is_tpu():
# XLA device does not support torch.Generator()
param.uniform_(low, high)
continue
generator = torch.Generator(device=param.data.device)
generator.manual_seed(seed)
if torch.finfo(param.data.dtype).bits < 16:
# uniform_ doesn't support < 16-bit datatypes (FP8)
dtype = param.data.dtype
tmp_param = param.data.to(torch.float16)
tmp_param = tmp_param.uniform_(low, high,
generator=generator).to(dtype)
param.data.copy_(tmp_param)
else:
param.uniform_(low, high, generator=generator)
def maybe_remap_kv_scale_name(name: str, params_dict: dict) -> Optional[str]:
"""Remap the name of FP8 k/v_scale parameters.
This function handles the remapping of FP8 k/v_scale parameter names.
It detects if the given name ends with a suffix and attempts to remap
it to the expected name format in the model. If the remapped name is not
found in the params_dict, a warning is printed and None is returned.
Args:
name (str): The original loaded checkpoint parameter name.
params_dict (dict): Dictionary containing the model's named parameters.
Returns:
str: The remapped parameter name if successful, or the original name
if no remapping is needed.
None: If the remapped name is not found in params_dict.
"""
if name.endswith(".kv_scale"):
print_warning_once(
"DEPRECATED. Found kv_scale in the checkpoint. "
"This format is deprecated in favor of separate k_scale and "
"v_scale tensors and will be removed in a future release. "
"Functionally, we will remap kv_scale to k_scale and duplicate "
"k_scale to v_scale")
# NOTE: we remap the deprecated kv_scale to k_scale
remapped_name = name.replace(".kv_scale", ".attn.k_scale")
if remapped_name not in params_dict:
print_warning_once(
f"Found kv_scale in the checkpoint (e.g. {name}), "
"but not found the expected name in the model "
f"(e.g. {remapped_name}). kv_scale is "
"not loaded.")
return None
return remapped_name
possible_scale_names = [".k_scale", ".v_scale"]
for scale_name in possible_scale_names:
if name.endswith(scale_name):
remapped_name = name.replace(scale_name, f".attn{scale_name}")
if remapped_name not in params_dict:
print_warning_once(
f"Found {scale_name} in the checkpoint (e.g. {name}), "
"but not found the expected name in the model "
f"(e.g. {remapped_name}). {scale_name} is "
"not loaded.")
return None
return remapped_name
# If there were no matches, return the untouched param name
return name