
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
268 lines
11 KiB
Python
268 lines
11 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import json
|
|
import re
|
|
import weakref
|
|
|
|
import jsonschema
|
|
import pytest
|
|
|
|
from vllm.distributed import cleanup_dist_env_and_memory
|
|
from vllm.entrypoints.llm import LLM
|
|
from vllm.outputs import RequestOutput
|
|
from vllm.sampling_params import GuidedDecodingParams, SamplingParams
|
|
|
|
MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct"
|
|
GUIDED_DECODING_BACKENDS = ["outlines", "lm-format-enforcer", "xgrammar"]
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def llm():
|
|
# pytest caches the fixture so we use weakref.proxy to
|
|
# enable garbage collection
|
|
llm = LLM(model=MODEL_NAME, max_model_len=1024)
|
|
|
|
with llm.deprecate_legacy_api():
|
|
yield weakref.proxy(llm)
|
|
del llm
|
|
cleanup_dist_env_and_memory()
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
|
|
def test_guided_regex(sample_regex, llm, guided_decoding_backend: str):
|
|
sampling_params = SamplingParams(temperature=0.8,
|
|
top_p=0.95,
|
|
guided_decoding=GuidedDecodingParams(
|
|
regex=sample_regex,
|
|
backend=guided_decoding_backend))
|
|
outputs = llm.generate(prompts=[
|
|
f"Give an example IPv4 address with this regex: {sample_regex}"
|
|
] * 2,
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
|
|
assert outputs is not None
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
print(generated_text)
|
|
assert generated_text is not None
|
|
assert re.fullmatch(sample_regex, generated_text) is not None
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
|
|
def test_guided_json_completion(sample_json_schema, llm,
|
|
guided_decoding_backend: str):
|
|
sampling_params = SamplingParams(temperature=1.0,
|
|
max_tokens=1000,
|
|
guided_decoding=GuidedDecodingParams(
|
|
json=sample_json_schema,
|
|
backend=guided_decoding_backend))
|
|
outputs = llm.generate(prompts=[
|
|
f"Give an example JSON for an employee profile "
|
|
f"that fits this schema: {sample_json_schema}"
|
|
] * 2,
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
|
|
assert outputs is not None
|
|
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
|
|
generated_text = output.outputs[0].text
|
|
assert generated_text is not None
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
output_json = json.loads(generated_text)
|
|
jsonschema.validate(instance=output_json, schema=sample_json_schema)
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
|
|
def test_guided_complex_json_completion(sample_complex_json_schema, llm,
|
|
guided_decoding_backend: str):
|
|
sampling_params = SamplingParams(temperature=1.0,
|
|
max_tokens=1000,
|
|
guided_decoding=GuidedDecodingParams(
|
|
json=sample_complex_json_schema,
|
|
backend=guided_decoding_backend))
|
|
outputs = llm.generate(prompts=[
|
|
f"Give an example JSON for an assignment grade "
|
|
f"that fits this schema: {sample_complex_json_schema}"
|
|
] * 2,
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
|
|
assert outputs is not None
|
|
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
|
|
generated_text = output.outputs[0].text
|
|
assert generated_text is not None
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
output_json = json.loads(generated_text)
|
|
jsonschema.validate(instance=output_json,
|
|
schema=sample_complex_json_schema)
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
|
|
def test_guided_definition_json_completion(sample_definition_json_schema, llm,
|
|
guided_decoding_backend: str):
|
|
sampling_params = SamplingParams(temperature=1.0,
|
|
max_tokens=1000,
|
|
guided_decoding=GuidedDecodingParams(
|
|
json=sample_definition_json_schema,
|
|
backend=guided_decoding_backend))
|
|
outputs = llm.generate(prompts=[
|
|
f"Give an example JSON for solving 8x + 7 = -23 "
|
|
f"that fits this schema: {sample_definition_json_schema}"
|
|
] * 2,
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
|
|
assert outputs is not None
|
|
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
|
|
generated_text = output.outputs[0].text
|
|
assert generated_text is not None
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
output_json = json.loads(generated_text)
|
|
jsonschema.validate(instance=output_json,
|
|
schema=sample_definition_json_schema)
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
|
|
def test_guided_choice_completion(sample_guided_choice, llm,
|
|
guided_decoding_backend: str):
|
|
sampling_params = SamplingParams(temperature=0.8,
|
|
top_p=0.95,
|
|
guided_decoding=GuidedDecodingParams(
|
|
choice=sample_guided_choice,
|
|
backend=guided_decoding_backend))
|
|
outputs = llm.generate(
|
|
prompts="The best language for type-safe systems programming is ",
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
|
|
assert outputs is not None
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
print(generated_text)
|
|
assert generated_text is not None
|
|
assert generated_text in sample_guided_choice
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
|
|
def test_guided_grammar(sample_sql_statements, llm,
|
|
guided_decoding_backend: str):
|
|
sampling_params = SamplingParams(temperature=0.8,
|
|
top_p=0.95,
|
|
max_tokens=1000,
|
|
guided_decoding=GuidedDecodingParams(
|
|
grammar=sample_sql_statements,
|
|
backend=guided_decoding_backend))
|
|
outputs = llm.generate(
|
|
prompts=("Generate a sql state that select col_1 from "
|
|
"table_1 where it is equals to 1"),
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True,
|
|
)
|
|
|
|
assert outputs is not None
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
|
|
generated_text = output.outputs[0].text
|
|
assert generated_text is not None
|
|
# use Lark to parse the output, and make sure it's a valid parse tree
|
|
from lark import Lark
|
|
parser = Lark(sample_sql_statements)
|
|
parser.parse(generated_text)
|
|
|
|
# remove spaces for comparison b/c we removed them in the grammar
|
|
ground_truth = "SELECT col_1 from table_1 where col_1 = 1".replace(
|
|
" ", "")
|
|
|
|
assert generated_text.strip() == ground_truth
|
|
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
def test_guided_options_request_deprecation_warning(sample_regex, llm):
|
|
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
|
|
|
with pytest.warns(DeprecationWarning, match="guided_options_request"):
|
|
llm.generate(prompts="This should fail",
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True,
|
|
guided_options_request=dict(guided_regex=sample_regex))
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
def test_validation_against_both_guided_decoding_options(sample_regex, llm):
|
|
sampling_params = SamplingParams(
|
|
temperature=0.8,
|
|
top_p=0.95,
|
|
guided_decoding=GuidedDecodingParams(regex=sample_regex))
|
|
|
|
with pytest.raises(ValueError, match="Cannot set both"):
|
|
llm.generate(prompts="This should fail",
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True,
|
|
guided_options_request=dict(guided_regex=sample_regex))
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
|
|
def test_guided_json_object(llm, guided_decoding_backend: str):
|
|
sampling_params = SamplingParams(temperature=1.0,
|
|
max_tokens=100,
|
|
n=2,
|
|
guided_decoding=GuidedDecodingParams(
|
|
json_object=True,
|
|
backend=guided_decoding_backend))
|
|
|
|
outputs = llm.generate(
|
|
prompts=("Generate a JSON object with curly braces for a person with "
|
|
"name and age fields for John Smith who is 31 years old."),
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
|
|
assert outputs is not None
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
|
|
for i in range(2):
|
|
generated_text = output.outputs[i].text
|
|
print(generated_text)
|
|
assert generated_text is not None
|
|
|
|
# Parse to verify it is valid JSON
|
|
parsed_json = json.loads(generated_text)
|
|
assert isinstance(parsed_json, dict)
|