vllm/examples/llava_next_example.py
xwjiang2010 98d6682cd1
[VLM] Remove image_input_type from VLM config (#5852)
Signed-off-by: Xiaowei Jiang <xwjiang2010@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-07-02 07:57:09 +00:00

48 lines
1.3 KiB
Python

from io import BytesIO
import requests
from PIL import Image
from vllm import LLM, SamplingParams
# Dynamic image input is currently not supported and therefore
# a fixed image input shape and its corresponding feature size is required.
# See https://github.com/vllm-project/vllm/pull/4199 for the complete
# configuration matrix.
def run_llava_next():
llm = LLM(
model="llava-hf/llava-v1.6-mistral-7b-hf",
image_token_id=32000,
image_input_shape="1,3,336,336",
image_feature_size=1176,
)
prompt = "[INST] " + "<image>" * 1176 + (
"\nWhat is shown in this image? [/INST]")
url = "https://h2o-release.s3.amazonaws.com/h2ogpt/bigben.jpg"
image = Image.open(BytesIO(requests.get(url).content))
sampling_params = SamplingParams(temperature=0.8,
top_p=0.95,
max_tokens=100)
outputs = llm.generate(
{
"prompt": prompt,
"multi_modal_data": {
"image": image
}
},
sampling_params=sampling_params)
generated_text = ""
for o in outputs:
generated_text += o.outputs[0].text
print(f"LLM output:{generated_text}")
if __name__ == "__main__":
run_llava_next()